ASTM E3310/E3310M-22 + Redline

ASTM E3310/E3310M-22 + Redline

Standard Test Method for Evaluating Ground Robot Capabilities and Remote Operator Proficiency: Maneuvering: Align Ground Contacts with Parallel Rails

Disponibilidad: En stock

68,00 €

Detalles

1.1 This test method is intended for remotely operated ground robots operating in complex, unstructured, and often hazardous environments. It specifies the apparatuses, procedures, and performance metrics necessary to measure the capability of a robot to align its ground contacts while maneuvering across parallel rails. This test method is one of several related maneuvering tests that can be used to evaluate overall system capabilities.

1.2 The robotic system includes a remote operator in control of most functionality, so an onboard camera and remote operator display are typically required. This test method can be used to evaluate assistive or autonomous behaviors intended to improve the effectiveness or efficiency of remotely operated systems.

1.3 Different user communities can set their own thresholds of acceptable performance within this test method for various mission requirements.

1.4 Performing Location—This test method may be performed anywhere the specified apparatuses and environmental conditions can be implemented.

1.5 Units—The International System of Units (a.k.a. SI Units) and U.S. Customary Units (a.k.a. Imperial Units) are used throughout this document. They are not mathematical conversions. Rather, they are approximate equivalents in each system of units to enable use of readily available materials in different countries. The differences between the stated dimensions in each system of units are insignificant for the purposes of comparing test method results, so each system of units is separately considered standard within this test method.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Significance and Use:

5.1 This test method is part of an overall suite of related test methods that provide repeatable measures of robotic system maneuvering and remote operator proficiency. The align ground contacts with parallel rails test challenges robotic system locomotion, operator control, effective camera positioning, chassis shape variability (if available), and remote situational awareness by the operator. As such, the align ground contacts with parallel rails test can be used to represent situations where hazards must be avoided by the robot (for example, debris, puddles) surrounding a path in the environment, highlighting situational awareness demands on the operator while controlling the robot.

5.2 The scale of the apparatus can vary to provide different constraints representative of typical intended deployment environments. For example, the three configurations can be representative of repeatable complexity for unobstructed environments (open configuration), relatively open parking lots with spaces between cars (rectangular confinement configuration), or within bus, train, or plane aisles, or dwellings with hallways and doorways (square confinement configuration).

5.3 The test apparatuses are low cost and easy to fabricate so they can be widely replicated. The procedure is also simple to conduct. This eases comparisons across various testing locations and dates to determine best-in-class systems and operators.

5.4 Evaluation—This test method can be used in a controlled environment to measure baseline capabilities. The parallel rails apparatus can also be embedded into operational training scenarios to measure degradation due to uncontrolled variables in lighting, weather, radio communications, GPS accuracy, etc.

5.5 Procurement—This test method can be used to identify inherent capability trade-offs in systems, make informed purchasing decisions, and verify performance during acceptance testing. This aligns requirement specifications and user expectations with existing capability limits.

5.6 Training—This test method can be used to focus operator training as a repeatable practice task or as an embedded task within training scenarios. The resulting measures of remote operator proficiency enable tracking of perishable skills over time, along with comparisons of performance across squads, regions, or national averages.

5.7 Innovation—This test method can be used to inspire technical innovation, demonstrate break-through capabilities, and measure the reliability of systems performing specific tasks within an overall mission sequence. Combining or sequencing multiple test methods can guide manufacturers toward implementing the combinations of capabilities necessary to perform essential mission tasks.

Información adicional

Autor American Society for Testing and Materials (ASTM International)
Comité E54.09 - Committee E54 on Homeland Security Applications
Publicado por ASTM
Tipo de Documento Norma
Tema ,Industrial robots. Manipulators
ICS 25.040.30 : Robots industriales. Manipuladores
Número de páginas 12
Reemplaza ASTM E3310/E3310M-21 + Redline
Colección ASTM Volume 15.08 - Multi-User - Single-Site Online
Palabra clave E3310/E3310M

Te podría(n) interesar también el/los siguiente(s) producto(s)