

Edition 1.0 2012-11

INTERNATIONAL STANDARD

Methods of measurement for digital network – Performance characteristics of terrestrial digital multimedia transmission network

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE XA

ICS 33.170 ISBN 978-2-83220-502-0

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FO	REWC)RD	5		
1	Scop	e	7		
2 Normative references					
3	Term	s and abbreviations	8		
4	General conditions of measurement				
	4.1	Definitions and classifications of digital terrestrial TV transmission network	9		
		4.1.1 General			
		4.1.2 Network classification for transmitting frequencies			
		4.1.3 Network classification on useable contribution links for signal transport			
		system between stations			
	4.2	Signal form			
		4.2.1 TS signal form			
		4.2.2 IF signal form			
	4.3	Test signals and auxiliary signals for measurement			
		4.3.1 Test signals			
_		4.3.2 Auxiliary signals for measurement			
5		ods of measurement for signal delay time			
	5.1	Scope			
	5.2	Definition of signal delay time			
		5.2.1 Delay time			
		5.2.2 Relative delay time difference			
	5.3	Direct/indirect measurement			
		5.3.1 General			
		5.3.2 Direct measurement system			
	_	5.3.3 Indirect measurement system			
	5.4	Measurement place			
_	5.5	Classification of measurement system			
6	Meth	ods of measurement for performances of radio wave relay station			
	6.1	Scope			
	6.2	Measurement diagram and measurement items			
		6.2.1 General			
		6.2.2 Measurement diagram			
		6.2.3 Measurement items			
	6.3	Methods of measurement			
		6.3.1 General			
		6.3.2 BER (case 2)			
		6.3.3 Equivalent noise degradation (END)			
		6.3.4 Amplitude frequency characteristics			
		6.3.5 Delay profile			
_		6.3.6 Phase jitter	. 22		
7		ods of measurement for performances of signal quality improvement instrument in radio wave relay station	. 24		
	7.1	General	. 24		
	7.2	Classification of signal quality improvement instrument	. 25		
	7.3	Measurement diagram and measurement condition	. 25		
	7 4	Common measurement items	25		

7.5 Methods of measurement for each kind of compensator	26
Annex A (informative) Examples of measurement methods for signal delay	27
Annex B (informative) Examples of measurement methods for signal quality of relay stations	38
Annex C (normative) Principle and methods of measurement of compensators	45
Figure 1 – Example of transmission network	
Figure 2 – Delay time and relative delay time difference definitons	
Figure 3 – Direct and indirect measurement method	14
Figure 4 – Measurement diagram of received signal of relay station (case a))	17
Figure 5 – Measurement diagram of relay station (case b))	17
Figure 6 – BER- Measurement method	20
Figure 7 – Definition of END	21
Figure 8 – Measurement diagram of amplitude-frequency characteristics	22
Figure 9 – Measurement block diagram of delay profile	22
Figure 10 – Reference model	23
Figure 11 – Conceptual diagram of relay station using a compensator	25
Figure A.1 – General measurement system for cases 1 to 3	27
Figure A.2 – Example of frame sync signal extracting part	28
Figure A.3 – Example of OFDM demodulator for frame timing extraction	29
Figure A.4 – Block diagram of direct measurement methods for time delay of OFDM signal	30
Figure A.5 – Example of frequency characteristics of combined signal	31
Figure A.6 – Example of delay profile of combined signal	31
Figure A.7 – General measurement system for cases 5,6,13 and 14	32
Figure A.8 – Timing chart for signal delay measurement	32
Figure A.9 – Principle of measurement using 1 pps signal	33
Figure A.10 – General measurement system for cases 7, 8 and 15,16	34
Figure A.11 – Measurement system for delay time (time reference is 1pps signal of GPS)	
Figure A.12 – Timing relation of each signals	
Figure A.13 – Delay profile of OFDM signal	37
Figure B.1 – BER measurement conceptual diagram for Null Packet method	
Figure B.2 – Examples of measurement result by Null Packet method	39
Figure B.3 – Method to compare the data before/after correction	
Figure B.4 – Superimposed C/N measurement system	41
Figure B.5 – Inherent degradation of OFDM demodulator measurement system	
Figure B.6 – Calculation process of delay profile	44
Figure C.1 – Example of measurement block diagram for performances of loop-back canceller	46
Figure C.2 – Example of measurement block diagram for performances of diversity reception equipment	48
Figure C.3 – Example of measurement block diagram for performances of co-channel interference canceller	50

equipmentequipment block diagram for performances of C/N Reset		
Table 1 – Classification of contribution link	11	
Table 2 – Parameter set of OFDM signal for test in ISDB-T system	11	
Table 3 – Parameter set of OFDM signal for test in DVB-T/H system	12	
Table 4 – Combination of signal type	13	
Table 5 – Classification of measurement system for signal delay time	16	
Table 6 – An example of measurement items for Relay station	18	
Table 7 – Example of the parameter set of spectrum analyzer	22	
Table 8 – Compensators used in digital terrestrial broadcasting relay network	25	
Table 9 – Examples of measurement items for signal quality improvement instrument	26	
Table A.1 – Signal format and timing extraction of each case	27	
Table A.2 – Equipment list for measurement	30	
Table A.3 – Equipment list for delay time measurement	35	
Table B.1 – Definition of Null Packet (in case of ISDB-T)	38	
Table B.2 – Example of noise power measurement parameters (6 MHz ISDB-T)	42	
Table B.3 – Example of signal power measurement parameters (6 MHz ISDB-T)	42	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

METHODS OF MEASUREMENT FOR DIGITAL NETWORK -

Performance characteristics of terrestrial digital multimedia transmission network

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62553 has been prepared by subcommittee IEC technical committee 103: Transmitting equipment for radiocommunication.

The text of this standard is based on the following documents:

CDV	Report on voting
103/89/CDV	103/106/RVC

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- · replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

METHODS OF MEASUREMENT FOR DIGITAL NETWORK -

Performance characteristics of terrestrial digital multimedia transmission network

1 Scope

When a transmission network for digital terrestrial television broadcasting (DTTB) is being deployed, new networking technologies such as the Single Frequency Network (SFN) can be employed excelling the conventional analogue TV systems. However, new technical evaluation parameters are introduced for installing SFN systems. In addition new quality evaluation methods are also established in order to achieve stable and high-quality broadcasting services avoiding the cliff effect, which is one of the typical phenomena in the digital transmission that the signal quality is abruptly degraded when the received C/N becomes just lower than a specific value representing the system limit.

Given the background described above, this International Standard has the purposes of

- establishing measuring methods that enable the objective evaluation of the performance of transmission networks so as to make stable DTTB services a reality,
- establishing a technical baseline, such as a definition of technical terms, to standardize measuring methods.

The measurement methods described in this standard are intended for digital terrestrial television transmission network test and validation. The measurement methods for digital terrestrial transmitter are not included in this standard. These methods are described in IEC 62273-1.

This standard does not give any regulations and/or mandatory requirements. The specifications and requirements defined for each system have priority over this standard. However, there may be some cases where details are not specified in each individual specification or different systems should be evaluated under a common measurement method. The purpose of this standard is to provide a common technical baseline that makes measurement results comparable in all cases.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62273-1:2007, Methods of measurement for radio transmitters – Performance characteristics of terrestrial digital televisiont transmitters

ISO/IEC 13818-1:2007, Information technology – Generic coding of moving pictures and associated audio information: Systems

Amendments 1 to 6

TR 101 190, Digital video broadcasting (DVB); implementation guidelines for DVB Terrestrial services; Transmission aspects

TS 101 191, Digital video broadcasting (DVB); DVB mega-frame for Single Frequency Network (SFN) synchronization

TR 102 377, Digital Video Broadcasting (DVB); DVB-H Implementation Guidelines

ARIB STD-B31, Transmission system for digital terrestrial television broadcasting