norma española

Abril 2014

TÍTULO

Componentes para dispositivos de protección contra sobretensiones de baja tensión

Parte 312: Principios de selección y aplicación para tubos de descarga en gas (TDG)

Components for low-voltage surge protective devices. Part 312: Selection and application principles for gas discharge tubes.

Composants pour parafoudres basse tension. Partie 312: Principes de choix et d'application pour les tubes à décharge de gaz.

CORRESPONDENCIA

Esta norma es la versión oficial, en español, de la Norma Europea EN 61643-312:2013, que a su vez adopta las Normas Internacionales IEC 61643-312:2013 e IEC 61643-312:2013/Cor 1:2013.

OBSERVACIONES

Esta norma anulará y sustituirá a la Norma UNE-EN 61643-311:2003.

ANTECEDENTES

Esta norma ha sido elaborada por el comité técnico AEN/CTN 207 *Transporte y distribución de energía eléctrica* cuya Secretaría desempeña UNESA.

EXTRACTO DEL DOCUMENTO UNE-EN 61643-312

Editada e impresa por AENOR Depósito legal: M 10784:2014 LAS OBSERVACIONES A ESTE DOCUMENTO HAN DE DIRIGIRSE A:

AENOR

Asociación Española de Normalización y Certificación

26 Páginas

Tel.: 902 102 201

Fax: 913 104 032

Índice

Prólogo	0	7
1	Objeto y campo de aplicación	9
2	Normas para consulta	9
3	Términos, definiciones y símbolos	10
3.1	Términos y definiciones	
3.2	Símbolos	12
4	Condiciones de servicio	
4.1	Generalidades	
4.2	Temperaturas bajas	
4.3	Presión del aire y altura	13
4.4	Temperatura ambiente	13
4.5	Humedad relativa	
5	Requisitos mecánicos y materiales	13
5.1	Generalidades	13
5.2	Robustez de las terminaciones	14
5.3	Soldabilidad	14
5.4	Radiación	14
5.5	Marcado	14
6	Generalidades	14
7	Construcción	14
7.1	Diseño	14
7.2	Descripción	15
7.3	Fallo en cortocircuito (prevención de fallos)	15
8	Función	17
8.1	Principio de protección	17
8.2	Modo de funcionamiento	17
8.3	Comportamiento a la respuesta	17
8.3.1	Comportamiento estático a la respuesta	17
8.3.2	Comportamiento dinámico a la respuesta	17
8.4	Fallo en cortocircuito (prevención de fallos)	19
9	Aplicaciones	
9.1	Circuitos de protección	19
9.1.1	Generalidades	19
9.1.2	Protección de 2 puntos (línea de señal)	20
9.1.3	Protección de 3 puntos	20
9.1.4	Protección de 5 puntos	
9.2	Protección del teléfono/Fax/Modem	
9.3	Protección de cables coaxiales y de TV	
9.4	Protección de fases de corriente alterna	
Bibliog	rafía	25

Figura 1 – Características de tensión y corriente de un TDG 11

Figura 2 – Símbolo para un TDG de dos electrodos	12
Figura 3 – Símbolo para un TDG de tres electrodos	12
Figura 4 – Ejemplo de un TDG de dos electrodos	15
Figura 5 – Ejemplo de un TDG de tres electrodos	15
Figura 6 – Construcción de prevención de fallos de un TDG de tres electrodos utilizando una pastilla de soldadura como separador sensible	16
Figura 7 – Construcción de prevención de fallos de un TDG de tres electrodos utilizando una lámina de plástico como separador sensible	16
Figura 8 – Comportamiento a la respuesta habitual de un TDG a 230 V	18
Figura 9 – Tensiones de cebado respecto al tiempo de respuesta	18
Figura 10 – Intensidad a través del TDG respecto al tiempo de respuesta del fallo en cortocircuito (prevención de fallos)	19
Figura 11 – Protección de 2 puntos (línea de señal)	20
Figura 12 – Protección de 3 puntos utilizando TDG de dos electrodos	20
Figura 13 – Protección de 3 puntos utilizando TDG de tres electrodos	20
Figura 14 – Protección de 3 puntos utilizando TDG de dos electrodos con fallo en cortocircuito	21
Figura 15 – Protección de 3 puntos utilizando TDG de tres electrodos con fallo en cortocircuito	21
Figura 16 – Protección de 5 puntos utilizando TDG de dos electrodos	21
Figura 17 – Protección de 5 puntos utilizando TDG de tres electrodos	21
Figura 18 – Protección de 5 puntos utilizando TDG de dos electrodos con fallo en cortocircuito	22
Figura 19 – Protección de 5 puntos utilizando TDG de tres electrodos con fallo en cortocircuito	22
Figura 20 – Protección del el teléfono/Fax/Modem con TDG de dos electrodos	22
Figura 21 – Protección del teléfono/Fax/Modem con TDG de tres electrodos	22
Figura 22 – Protección de cables coaxiales y de TV	23
Figura 23 – Protección de fases de corriente alterna	24

1 Objeto y campo de aplicación

Esta parte de la serie de Normas IEC 61643 es de aplicación a los tubos de descarga en gas (TDG) utilizados para la protección contra sobretensiones en redes de telecomunicaciones, señalización y de distribución en baja tensión, con tensiones del sistema nominales de hasta 1 000 V eficaces en c.a. y 1 500 V en c.c. Se definen como explosores, o explosores en serie, con dos o tres electrodos metálicos herméticamente estancos de manera que tanto la mezcla como la presión del gas estén bajo control. Están diseñados para proteger equipos o personas, o ambos, de tensiones transitorias elevadas. Esta norma proporciona información sobre las características y las aplicaciones de los circuitos de los TDG que tengan dos o tres electrodos. Esta Norma no especifica requisitos aplicables a dispositivos de protección contra sobretensiones completos, ni tampoco especifica todos los requisitos necesarios en TDG empleados dentro de dispositivos electrónicos, donde es altamente importante una coordinación precisa entre la actuación del TDG y la capacidad de soportar sobretensiones del dispositivo de protección.

Esta parte de la Norma IEC 61643:

- no trata de montajes ni de su efecto en las características de los TDG. Las características mencionadas sólo se aplican a TDG montados en las formas descritas para los ensayos;
- no trata de las dimensiones mecánicas;

- no trata de los requisitos de aseguramiento de la calidad;
- puede ser insuficiente para TDG utilizados a alta frecuencia (> 30 MHz);
- no trata de las tensiones electrostáticas;
- no trata de componentes para la protección contra sobretensiones híbridos o de dispositivos TDG compuestos.

2 Normas para consulta

Los documentos indicados a continuación, en su totalidad o en parte, son normas para consulta indispensables para la aplicación de este documento. Para las referencias con fecha, solo se aplica la edición citada. Para las referencias sin fecha se aplica la última edición (incluyendo cualquier modificación de ésta).

IEC 60068-2-1, Ensayos ambientales. Parte 2-1: Ensayos. Ensayo A: Frío.

IEC 60068-2-20, Ensayos ambientales. Parte 2-20: Ensayos. Ensayo T: Métodos de ensayo de soldabilidad y resistencia al calor de soldadura de dispositivos con plomo.

IEC 60068-2-21, Ensayos ambientales. Parte 2-21: Ensayos. Ensayo U: Robustez de los terminales y de los dispositivos de montaje incorporados.

IEC 61643-311, Componentes para dispositivos de protección contra sobretensiones de baja tensión. Parte 311: Requisitos de funcionamiento y circuitos de ensayo para tubos de descarga en gas (TDG).