Contents

Foreword	XV
Preface to the Third Edition	xvii
Preface to Second Edition	xix
Preface to First Edition	<u>xxi</u>
Acknowledgments	XXV

CHAPTER 1

Uncertainty and Sensitivity in Measurements and Calculations in Accident Reconstruction

Introduction	1
Upper and Lower Bounds Using a Given Model	<u>4</u>
Differential Variations	<u>6</u>
Statistics of Related Variables Linear Functions Arbitrary Functions (Approximate Method)	<u>9</u> <u>10</u> <u>11</u>
Finite Differences	<u>13</u>
Monte Carlo Method	<u>16</u>
Design of Experiments	<u>19</u>
The Bayesian Method	<u>23</u>
Application Issues and Other Considerations	<u>31</u>
Other Methods of Evaluating Uncertainty	33

CHAPTER 2

Tire Forces	<u>37</u>
Introduction	<u>37</u>
Rolling Resistance	<u>39</u>
Slip, Longitudinal Force, and Lateral Force	<u>40</u>
Longitudinal Slip	<u>41</u>

1

Comments, the Coefficient of Friction, and the Frictional Drag Coefficient	45
Longitudinal Tire Force	<u>45</u>
Vehicle Event Data Recorders and Longitudinal Slip	<u>47</u> 49
Lateral Tire Force	<u>45</u> 50
Friction Circle and Friction Ellipse	<u>52</u>
Idealized Friction Circle and Idealized Friction Ellipse	<u>53</u>
Friction Circle and Friction Ellipse	<u>55</u>
Modeling Combined Steering and Braking Tire Forces	<u>58</u>
The Bakker-Nyborg-Pacejka Model for Lateral and Longitudinal Tire Forces	<u>58</u>
Modified Nicolas-Comstock Combined Tire Force Model	<u>60</u>
Application Issues	<u>66</u>
Tire Stiffness Values	<u>66</u>
Antilock Braking Systems	<u>69</u>
Light Vehicle (LV) Frictional Drag Coefficients	<u>70</u>
Frictional Drag Coefficients for Heavy Trucks (HT)	<u>72</u>
Hydroplaning	<u>76</u>
Appendix <u>2</u> A	<u>79</u>
CHAPTER 3	
Straight-Line Motion	<u>83</u>
Introduction	<u>83</u>
Uniform Acceleration and Braking	
Motion	<u>83</u>
Equations of Constant Acceleration	<u>84</u>
Road Grade and Equivalent Drag Coefficients	<u>87</u>
Vehicle Forward-Motion Performance Equations	<u>87</u>
Stopping Distance	<u>92</u>
Distance from Speed	<u>93</u>
Speed from Distance	<u>93</u>
Application Issues	<u>95</u>
Stopping Distance	<u>95</u>
Two Objects Decelerating While in Contact	<u>98</u>
Motion Around Curves	<u>101</u>
Vehicle Fall Equations	<u>101</u>
Equations of Motion of a Projectile Equations of Motion of a Vehicle Leading to a Fall Including	<u>101</u>

CHAPTER 4	
Critical Speed from Tire Yaw Marks	<u>111</u>
Introduction	<u>111</u>
Estimation of Speed from Yaw Marks	<u>112</u>
Yaw Marks	<u>115</u>
Radius from Yaw Marks	<u>117</u>
Critical Speed	<u>118</u>
CSF on a Flat Surface	<u>119</u>
Roadway with Superelevation	<u>119</u>
Application Issues	<u>123</u>
Tire Marks in Practice	<u>123</u>
Other Curved Tire Marks Frictional Drag Coefficient, <i>f</i>	<u>123</u> 124
Driver Control Modes	124
Tire Forces in a Severe Yaw	124
The Critical Speed Formula and Edge Drop-Off (Road-Edge Reentry)	<u>126</u>
Uncertainty of Critical Speed Calculations	<u>126</u>
Estimation of Uncertainty by Differential Variations	<u>126</u>
Accuracy of the Critical Speed Method	<u>127</u>
Statistical Variations	<u>129</u>
Yaw Mark Striations	<u>131</u>
Striation Angles	<u>132</u>
Striation Spacing	<u>135</u>

CHAPTER 5

Reconstruction of Vehicular Rollover Accidents	<u>139</u>
Introduction	<u>139</u>
Rollover Test Methods	<u>141</u>
Documentation of the Accident Site	<u>144</u>
Documentation of the Accident Vehicle	<u>146</u>
Pre-trip Phase Tire Mark Striation	<u>149</u> <u>155</u>
Trip Phase	<u>158</u>
Modeling the Trip Phase	<u>159</u>
Complex Vehicle Trip Models	<u>164</u>
Rim Contact	<u>165</u>

Roll Phase	<u>166</u>
Speed Analysis for the Roll Phase	<u>166</u>
Determining the Roll Motion of the Vehicle	<u>170</u>
Generating a Realistic Roll Velocity Curve	<u>173</u>
Example Rollover Reconstruction	<u>174</u>
Vehicle-to-Ground Impact Model	<u>182</u>
Impulse Ratio (µ)	<u>185</u>
Impact Angle (ϕ)	<u>187</u>

<u>189</u>

CHAPTER 6 Analysis of Collisions, Impulse-Momentum Theory

Introduction	<u>189</u>
Quantitative Concepts	<u>191</u>
Point-Mass Impulse-Momentum Collision Theory Coefficient of Restitution, Frictionless Point-Mass Collisions Collisions Where Sliding Ends before Separation: The Critical	<u>193</u> <u>199</u>
Impulse Ratio, μ_0	<u>201</u>
Sideswipe Collisions and Common-Velocity Conditions	<u>201</u>
Controlled Collisions	<u>204</u>
Coefficients of Restitution	<u>206</u>
Stiffness Equivalent Collision Coefficient of Restitution	<u>206</u>
Mass Equivalent Collision Coefficient of Restitution	<u>208</u>
Summary of the Point-Mass Impact Model	<u>209</u>
Planar Impact Mechanics	<u>210</u>
Overview of Planar Impact Mechanics Model	<u>216</u>
Application Issues: Coefficients, Dimensions, and Angles	<u>219</u>
Coefficient of Restitution and Impulse Ratio	<u>219</u>
Distances, Angles, and Point C	<u>221</u>
Work of Impulses and Energy Loss (Crush Energy)	<u>223</u>
RICSAC Collisions	<u>225</u>
Summary of Planar Impact Mechanics Model	<u>229</u>
Application Issues	<u>230</u>
Crashes with Large Mass Disparity between the Vehicles	<u>230</u>
Underride/Override Crashes	<u>233</u>

CHAPTER <u>7</u>	
Event Data Recorders and Crash Reconstruction	<u>237</u>
Introduction	<u>237</u>
Light Vehicle EDR Data	<u>242</u>
EDR Reported ΔV	<u>242</u>
Recording Delay	<u>244</u>
Incomplete Recording	<u>245</u>
	<u>245</u>
Effect of ACM Location EDR Reported Precrash Vehicle Speed	<u>246</u> 247
Heavy Vehicle EDR Data	<u>251</u>
Summary	<u>252</u>
CHAPTER 8	
Reconstruction Applications,	
Impulse-Momentum Theory	<u>255</u>
Introduction	<u>255</u>
Point-Mass Collision Applications	<u>256</u>
Rigid Body, PIM Applications: Vehicle Collisions with Rotation	<u>263</u>
Collision Reconstruction Using a Solution of the Planar Impact Equations	<u>264</u>
Reconstructions Using a Spreadsheet Solution of the Planar	
Impact Equations	<u>266</u>
Optimization Methods for Collision Reconstruction	<u>271</u>
Low-Speed In-Line (Central) Collisions	<u>282</u>
In-Line Impulse-Momentum Impact Model	<u>283</u>
Bumper Pair Stiffness Characterization Method	<u>289</u>
Airbags, Event Data Recorders, and ΔV	<u>302</u>
Crash Data Precrash Data	<u>303</u> <u>304</u>
	<u>304</u>
CHAPTER 9	
Collisions of Articulated Vehicles,	
Impulse-Momentum Theory	<u>311</u>
Introduction	<u>311</u>
Assumptions for Application of	
Planar Impact Mechanics to Articulated Vehicles	<u>313</u>

	<u>316</u>
Validation of the Articulated Vehicle Impact Equations Using Experimental Data	<u>323</u>
Appendix 9A: Data Sheets for Example 9.4	<u>345</u>
CHAPTER 10	
Crush Energy and ΔV	<u>349</u>
Introduction	<u>349</u>
The CRASH3 Method	<u>350</u>
Crush Stiffness Coefficients Based on Average Crush from Rigid Barrier Tests	<u>361</u>
Application Issues	372
Crush Stiffness Coefficients from Vehicle-to-Vehicle Collisions	372
Damage to One Vehicle Unknown	<u>374</u>
Side Crush Stiffness Coefficients, Two-Vehicle, Front-to-Side Crash Tests	374
Nonlinear Models of Crush	<u>374</u>
Arbitrary Number of Crush Measurements	<u>374</u>
CHAPTER 11	
Frontal Vehicle-Pedestrian Collisions	<u>377</u>
Introduction	<u>377</u>
General and Supplementary	380
mormation	
To my and Duris ations (True of D. Mandal	
	<u>380</u>
Hybrid Wrap Model	<u>380</u> <u>381</u>
Hybrid Wrap Model Vehicle-Pedestrian Impact (Type II) Mechanics Model	<u>380</u> <u>381</u> <u>382</u>
Hybrid Wrap Model	<u>380</u> <u>381</u>
Hybrid Wrap Model Vehicle-Pedestrian Impact (Type II) Mechanics Model Pedestrian Motion Vehicle Motion	<u>380</u> <u>381</u> <u>382</u> <u>383</u>
Hybrid Wrap Model Vehicle-Pedestrian Impact (Type II) Mechanics Model Pedestrian Motion Vehicle Motion Values of Physical Variables	380 381 382 383 383 386
Hybrid Wrap Model Vehicle-Pedestrian Impact (Type II) Mechanics Model Pedestrian Motion Vehicle Motion Values of Physical Variables Reconstruction (Hybrid) Model	380 381 382 383 386 386 387
Hybrid Wrap Model Vehicle-Pedestrian Impact (Type II) Mechanics Model Pedestrian Motion Vehicle Motion Values of Physical Variables Reconstruction (Hybrid) Model	380 381 382 383 386 386 387 392
Hybrid Wrap Model Vehicle-Pedestrian Impact (Type II) Mechanics Model Pedestrian Motion Vehicle Motion Values of Physical Variables Reconstruction (Hybrid) Model Application to a Motorcycle Rider Thrown after Impact	380 381 382 383 386 386 387 392
Vehicle-Pedestrian Impact (Type II) Mechanics Model Pedestrian Motion Vehicle Motion Values of Physical Variables Reconstruction (Hybrid) Model Application to a Motorcycle Rider Thrown after Impact CHAPTER 12 Photogrammetry for Accident Reconstruction	380 381 382 383 386 387 392 394
Hybrid Wrap Model Vehicle-Pedestrian Impact (Type II) Mechanics Model Pedestrian Motion Vehicle Motion Values of Physical Variables Reconstruction (Hybrid) Model Application to a Motorcycle Rider Thrown after Impact	380 381 382 383 386 387 392 394 394

433

Camera Matching	404
Camera Hatening	
Planar Photogrammetry	<u>405</u>
Three-Dimensional (3D) Photogrammetry	<u>413</u>
Fundamental Information Related to Three-Dimensional (3D) Photogrammetry	<u>414</u>
Mathematical Basis of Three-Dimensional (3D) Photogrammetry	<u>415</u>
Projection Equations	<u>415</u>
Collinearity Equations	<u>417</u>
Coplanarity Equations	<u>418</u>
Multiple Image Considerations	<u>418</u>
Considerations of the Use of Three-Dimensional (<u>3</u> D)	418
Photogrammetry in Practice	418
Summary	<u>428</u>
Appendix 12A: Projective Relation for Planar Photogrammetry	<u>428</u>

CHAPTER 13 Railroad Grade Crossing and Road Intersection Conflicts

Introduction	<u>433</u>
Clearing a Crossing or Intersection Using a Sight Triangle	<u>434</u>
Sight Distance for Stopping before a Crossing or Intersection	<u>439</u>
FHWA Grade-Crossing Equations	<u>443</u>
Stopping Distance	<u>444</u>
Stopping Sight Distance	<u>446</u>
Clearing Sight Distance	<u>446</u>
Locomotive Horn Sound Levels at Railroad Grade Crossings	<u>448</u>
Calculation of Horn Sound Levels at a Distance from a Point Source	<u>448</u>
Insertion Loss of Light Vehicles	<u>452</u>

CHAPTER 14	
Vehicle Dynamic Simulation	<u>457</u>
Introduction	<u>457</u>
Planar Vehicle Dynamic Simulation	<u>458</u>
Tire Side-Force Stiffness Coefficients	<u>461</u>
Light-Vehicle Side-Force Coefficients	<u>461</u>
Heavy-Vehicle Side-Force Coefficients	<u>462</u>
Sensitivity of the Model to Parameters	<u>462</u>

Examples	<u>463</u>
Appendix 14A: Differential Equations of Planar Vehicular Motion	<u>484</u>
Notation	<u>485</u>
Appendix A: Units and Numbers	<u>487</u>
Appendix B: Glossary	<u>501</u>
References	<u>529</u>
Bibliography	<u>557</u>
About the Authors	<u>559</u>
Index	<u>561</u>