Contents

<u>xiii</u>
XV
<u>xvii</u>
<u>xix</u>
<u>xxi</u>

CHAPTER 1

Introduction to Advanced Driver Assistance Systems and Automated Driving

1.1.	Sense Organs of a Vehicle	<u>2</u>
	1.1.1. Camera	<u>2</u>
	1.1.2. Radar	<u>2</u>
	1.1.3. Lidar	<u>3</u>
	1.1.4. Ultrasonic Sensors	<u>3</u>
	1.1.5. Inertial Measurement Unit Sensors	<u>3</u>
	1.1.6. High-Definition Maps	<u>4</u>
1.2.	ADAS and Automated Driving	<u>4</u>
	1.2.1. Highway Assist and Traffic Jam Assist (Level 2)	<u>5</u>
	1.2.2. Remote Parking (Level 2)	<u>5</u>
	1.2.3. Traffic Jam Chauffeur (Level 3)	<u>6</u>
	1.2.4. Highway Chauffeur (Level 3)	<u>6</u>
	1.2.5. Urban and Suburban Pilot (Level 4)	<u>6</u>
	1.2.6. Highway Autopilot (Level 4)	<u>6</u>
	1.2.7. Valet Parking (Level 4)	<u>7</u>
1.3.	Level 5: Full Automation	<u>7</u>
1.4.	Operational Design Domain	<u>8</u>
1.5.	Dynamic Driving Task	<u>9</u>
1.6.	Object and Event Detection and Response	<u>9</u>
1.7.	Summary	<u>10</u>
Refer	rences	<u>10</u>

1

СНИ	APTER 2	
Des	ign Approaches for Automated Driving	
Sys	tems	<u>13</u>
2.1.	Product Development	<u>13</u>
2.2.	Distributed Architecture versus Centralized Architecture	<u>15</u>
2.3.	Developing an Automated Driving System	<u>16</u>
2.4.	Requirement Elicitation	<u>19</u>
2.5.	Quality Function Deployment	<u>21</u>
2.6.	Designing a Robust Product	<u>23</u>
2.7.	Failure Mode and Effects Analysis	<u>26</u>
2.8.	Summary	<u>29</u>
Refe	rences	<u>29</u>
CH	APTER 3	
Diff	erent Test Approaches	<u>33</u>
3.1.	Verification and Validation	<u>33</u>
3.2.	Agility in Verification and Validation	<u>34</u>
3.3.	Different Levels of Testing—A Reference from V-Model	<u>35</u>
3.4.	Defects at Different Levels of Testing	<u>36</u>
3.5.	Simulation and Testing	<u>38</u>
	3.5.1. Model-in-the-Loop Simulation	<u>39</u>
	3.5.2. Software-in-the-Loop Simulation	<u>40</u>
	3.5.3. Hardware-in-the-Loop Simulation	<u>40</u>
	3.5.4. Driver-in-the-Loop Simulation	<u>44</u>
7.0	3.5.5. Vehicle-in-the-Loop Simulation	<u>45</u>
3.6.	Summary rences	<u>46</u>
Rele		<u>47</u>
CH	APTER 4	
Sce	nario-Based Testing	<u>49</u>
4.1.	Scenario Elicitation, Description, and Structuring	<u>49</u>
4.2.	Scenario Implementation and Parameterization	<u>55</u>
4.3.	Scenario-Based Simulation and Testing	<u>59</u>
4.4.	Scenario-Based Testing at Different Levels	<u>62</u>
4.5.	Scenario Database Management	<u>64</u>

4.6.	Automation in Scenario-Based Testing	<u>66</u>
4.7.	Summary	<u>68</u>
Refe	rences	<u>68</u>
CHA	APTER 5	
Sim	ulation Environment for ADAS and	
Aut	omated Driving Systems	<u>71</u>
5.1.	Simulation Tool Selection	<u>72</u>
5.2.	Co-simulation in Testing	<u>74</u>
5.3.	General Qualification of Simulation Environment	<u>78</u>
5.4.	Limitations of Simulation Tools Used in ADAS and	
	Automated Driving	<u>82</u>
5.5.	Summary	<u>84</u>
Refe	rences	<u>84</u>

CHAPTER 6

Gro	und	Truth	Generation and Testing Neural	
Net	work	-Base	d Detection	<u>87</u>
6.1.	Intro	duction	to Data-Driven Software Development	<u>87</u>
6.2.	Data	Annota	tion and Dataset Generation	<u>90</u>
6.3.	Metri	c for De	tection Quality Evaluation	<u>93</u>
6.4.	Evalu	ating K	PIs for Detection Algorithm	<u>95</u>
	6.4.1.	Precond	ditions for Sample Data Collection	<u>96</u>
	6.4.2.	Data an	d Data Types	<u>96</u>
	6.4.3. Performance Evaluation (KPI Measurement)			<u>99</u>
		6.4.3.1.	Detection Evaluation on a Single Frame (Detection Performance)	<u>100</u>
		6.4.3.2.	Detection Evaluation on Complete Ground Truth Dataset (Detection Quality)	<u>100</u>
		6.4.3.3.	Detection Evaluation Using Noise Variants as Input (Detection Performance and Quality)	<u>100</u>
		6.4.3.4.	Detection Evaluation in the Vehicle (Detection Performance)	<u>101</u>
6.5.	Diffe	rent Acc	eptance Quality for Detection Algorithms	<u>101</u>
6.6.	Chall	enges ir	Measuring Quality of Object Detection	<u>102</u>
6.7.	Sumn	nary		<u>103</u>
Refer	rences			<u>104</u>

CHAPTER 7

Testing and Qualification of Perception Software 107

7.1.	Overview of Automated Driving Systems		
7.2.	Perception—An Architecture Overview		
7.3.	Different Methods for Perception Software Testing	<u>111</u>	
7.4.	 Methods for Evaluating Perception Software Components 7.4.1. Evaluation of Static and Dynamic Object Fusion 7.4.2. Evaluation of Grid Fusion 7.4.3. Evaluation of Localization 7.4.4. Evaluation of Prediction Algorithms 	115 115 118 120 121	
7.5.	 Measuring Performance and Quality of Perception Software 7.5.1. Preconditions for Measurements 7.5.2. Data and Data Types 7.5.3. Performance Evaluation (KPI Measurement) 	<u>122</u> <u>124</u> <u>125</u> <u>125</u>	
7.6.	Testing Robustness of the Perception Software	<u>126</u>	
7.7.	Challenges in the Measurement and Evaluation of Perception	<u>131</u>	
7.8.	Summary	<u>132</u>	
Refer	rences	<u>132</u>	

CHAPTER 8

Calibration of ADAS and Automated Driving Features

8.1.	Calibration—An Overview Based on Ideality Equation	<u>135</u>
8.2.	Common Types of Calibration in an Automated Driving	
	System	<u>138</u>
	8.2.1. End of Line (EoL) Calibration	<u>139</u>
	8.2.2. Service Calibration	<u>140</u>
	8.2.3. Online Calibration	<u>141</u>
	8.2.4. Functional Calibration	<u>142</u>
8.3.	Calibration of ADAS and Automated Driving Features	<u>142</u>
8.4.	Calibration Environment for Automated Driving Vehicles	<u>145</u>
8.5.	Calibration over Diagnostics Interface	<u>147</u>
8.6.	Summary	<u>148</u>
Refer	rences	<u>149</u>

<u>135</u>

CHA	NPTER 9	
Intro	oduction to Functional Safety and	
Cyb	persecurity Testing	<u>153</u>
9.1.	Functional Safety and Cybersecurity in Automotive	<u>154</u>
9.2.	Safety Qualification of Tools and Toolchain	<u>156</u>
9.3.	An Overview of Functional Safety Testing	<u>161</u>
9.4.	Fault Injection Testing Using Diagnostics	<u>165</u>
9.5.	Safety Testing of Artificial Neural Networks—An Overview	<u>167</u>
9.6.	An Overview of Cybersecurity Testing	<u>171</u>
9.7.	Summary	<u>174</u>
Refe	rences	<u>175</u>
CHA	VPTER 10	
Veri	ification and Validation Strategy	<u>179</u>
10.1.	Test-Driven Development and Feature-Driven Development	<u>180</u>
10.2.	Purpose of Test Design and Test Depth	<u>181</u>
10.3.	Developing a Test Suite	<u>185</u>
10.4.	Test Process	<u>190</u>
10.5.	Testing in the Vehicle	<u>192</u>
10.6.	Summary	<u>194</u>
Refe	rences	<u>195</u>
CHA	APTER 11	

Acc	eptance Criteria and Maturity Evaluation	<u>197</u>
11.1.	Need for Acceptance Criteria	<u>198</u>
11.2.	Defining Maturity of the System and Features	<u>198</u>
11.3.	Maturity Evaluation for the System	<u>201</u>
11.4.	Maturity Evaluation for the Features	<u>201</u>
11.5.	Vehicle Testing and Feature Maturity Evaluation	<u>204</u>
11.6.	Case Study on How Various ADAS Features Are Deployed	<u>209</u>
11.7.	Summary	<u>210</u>
Refer	rences	<u>211</u>

CHAPTER 12		
Data Flow and Management in Automated		
Driving	213	
12.1. Importance of Data in Automated Driving	<u>214</u>	
12.2. Types of Data Collected	<u>215</u>	
12.3. Data Acquisition Strategy and Data Loggers	<u>219</u>	
12.4. Data Reuse Strategy	<u>222</u>	
12.5. Data Analysis and Data Flow	<u>223</u>	
12.6. Data Storage and Management—A Case Study	<u>226</u>	
12.7. Challenges in Data Acquisition and Management	<u>230</u>	
12.8. Summary	<u>231</u>	
References	<u>232</u>	

CHAPTER 13

Cha	Illenges and Gaps in Testing Automated	
Dri∖	ving Features	<u>235</u>
13.1.	Challenges due to Infrastructure Quality	<u>236</u>
13.2.	Challenges in the Design of Automated Driving Systems	<u>236</u>
13.3.	Challenges in Performing Simulation-Based Testing	<u>238</u>
13.4.	Challenges in Laboratory-Based Tests and Vehicle Tests	<u>239</u>
13.5.	Challenges in Using AI	<u>241</u>
13.6.	Challenges in Scenario-Based Testing	<u>242</u>
13.7.	Challenges in Testing for Functional Safety and Cybersecurity	<u>243</u>
13.8.	Challenges with Legal Aspects, Liabilities and Its Economic Impacts	<u>245</u>
13.9.	Summary	<u>246</u>
Refe	rences	<u>247</u>
Index	ζ.	<u>249</u>
Abou	It the Author	<u>255</u>