Contents

Foreword

Ackno	owledgments	XV
	SECTION ONE	
C H A	APTER 1	
Intr	oduction	
1.1	Overview	1
1.2	Historical Perspective	2
1.3	Structure of the Text	6
CHA	APTER 2	
Sim	ple Suspension as a Linear Dynamic Syster	n
2.1	Introduction	11
2.2	The Simply Suspended Mass and Linear Systems Theory	12
2.3	A Suspended Mass with Damping	18
2.4	Basic Frequency Responses	22
2.5	State Space and Block Diagram Algebra	28
2.6	State Space Realization	33
2.7	First-Order Matrix Differential Equations	35
2.8	Summary	37
CHA	APTER 3	
The	Quarter-Car Model	
3.1	Introduction	39
3.2	Representing Reality with the Quarter-Car Model	40
		vii

xiii

Generalized	Vehicle	Dynamics

viii

3.3	Two Fundamental Frequencies of Interest	46
3.4	The Conventional Quarter-Car Model	48
3.5	Stochastic Road Input and Human Sensitivity to Vibration	55
3.6	Nonlinear Damping	61
3.7	Summary	62
	PTER 4	
The	Pitch Plane Model	
4.1	Introduction	65
4.2	Basic Pitch-Plane Model	66
4.3	Pitch Plane-Free Response	69
4.4	Road Inputs to the Pitch-Plane Model	72
4.5	Pitch-Plane Ride Quality and the Olley Ride Criteria	76
4.6	Pitch-Plane Model with Damping	78
4.7	Generalized Pitch-Plane Model and Olley Solution	81
4.8	Three-Axle Vehicle Example	88
4.9	Summary	92
O III A		
	POUR DIAMA MANIA	
rne	Roll-Plane Model	
5.1	Introduction	95
5.2	Simple Two-Axle Roll-Plane Model	96
5.3	The Roll Mode for a Single Axle	100
5.4	The Roll-Plane Model with Stabilizer Bar	103
5.5	Single-Wheel Inputs	109
5.6	Passenger Car Roll	111
5.7	Generalized Roll-Plane Model	113
5.8	Roll and Handling	113
5.9	Summary	114

Contents ix

C H.	APTER 6	
	ive Suspension to Optimize Ride	
6.1	Introduction	117
6.2	Inertial Damping	119
6.3	Lotus Modal Control	126
6.4	Modal Inertial Damping	127
6.5	Sprung Mass Acceleration Feedforward	131
6.6	Quarter-Car Optimal Control	132
6.7	Full Vehicle Optimal Control	139
6.8	Modal Inertial Damping and Handling	142
6.9	Summary	144
	SECTION TWO	
CHA	APTER 7	
Han	dling Basics	
7.1	Introduction	149
7.2	Ackermann Steering	150
7.3	Steering Efforts	157
7.4	Slip Angles	165
7.5	Tire Forces	168
7.6	The Conventional Bicycle Model	170
7.7	Summary	175
CHA	APTER 8	
Ref	erence Frames	
8.1	Introduction	179
8.2	Reference Frames in General	180
8.3	Velocity of a Point Translating in a Rotating Reference Frame	182
8.4	Velocity and Acceleration of a Point in a Translating and Rotating Reference Frame	183

х

		Contents	хi
11.8	Theoretical Interpretation of Practical Systems	i	254
11.9	Summary		255
CHA	APTER 12		
Two	o-Axle Vehicles that Roll		
12.1	Introduction		259
12.2	Roll Axis Definitions		260
12.3	Acceleration Equations		262
12.4	External Roll Forces on Sprung Mass		265
12.5	Camber Effects		267
12.6	Roll Steer Effects		269
12.7	Differential Equations of Motion with Roll		271
12.8	Roll Steer Compensation		275
12.9	Including Steering Compliance in Understeer		277
12.10	Inclusion of Nonlinear Tires		278
12.11	Summary		278
CHA	APTER 13		
Thre	ee-Axle Vehicle Dynamics		
13.1	Introduction		281
13.2	Peculiarities of the Three-Axle Vehicle		282
13.3	The Three-Axle Model		287
13.4	Third Axle Steering		294
13.5	Trajectory Tracking		299
13.6	Summary		301
СИА	APTER 14		_
	neralized Multiaxle Vehicle Dynamic	S	
	Introduction		707
14.1			303
14.2	General Model		304

310

14.3 An Arbitrarily Steered Axle

About the Author

14.4	All Arbitrary Axles Steered Proportionally	312
14.5	The Multiaxle Vehicle with Roll	314
14.6	Summary	319
CHA	APTER 15	
Aut	omated Vehicle Architecture from	
Veh	icle Dynamics	
15.1	Introduction	321
15.2	Properties of a Typical Three-Axle Commercial Vehicle	323
15.3	Control of Rear Axle	325
15.4	Rear Axle Control for Yaw Rate Equivalence	327
15.5	Vehicle Results	331
15.6	Proposed Three-Axle Vehicle	335
15.7	Summary	337
After	word	341
Index		343

351