ASTM E2860-20

ASTM E2860-20

Standard Test Method for Residual Stress Measurement by X-Ray Diffraction for Bearing Steels

Verfügbarkeit: Auf Lager

76,00 €

Details

1.1 This test method covers a procedure for experimentally determining macroscopic residual stress tensor components of quasi-isotropic bearing steel materials by X-ray diffraction (XRD).

1.2 This test method provides a guide for experimentally determining stress values, which play a significant role in bearing life.

1.3 Examples of how tensor values are used are:

1.3.1 Detection of grinding type and abusive grinding,

1.3.2 Determination of tool wear in turning operations,

1.3.3 Monitoring of carburizing and nitriding residual stress effects,

1.3.4 Monitoring effects of surface treatments such as sand blasting, shot peening, and honing,

1.3.5 Tracking of component life and rolling contact fatigue effects,

1.3.6 Failure analysis,

1.3.7 Relaxation of residual stress, and

1.3.8 Other residual-stress-related issues that potentially affect bearings.

1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Significance and Use:

5.1 This test method covers a procedure for experimentally determining macroscopic residual stress tensor components of quasi-isotropic bearing steel materials by XRD. Here the stress components are represented by the tensor sij as shown in Eq 1 (1,5 p. 40). The stress strain relationship in any direction of a component is defined by Eq 2 with respect to the azimuth phi(f) and polar angle psi(?) defined in Fig. 1 (1, p. 132).

Equation E2860-20_3

Equation E2860-20_4

5.1.1 Alternatively, Eq 2 may also be shown in the following arrangement (2, p. 126):

Equation E2860-20_5

5.2 Using XRD and Bragg’s law, interplanar strain measurements are performed for multiple orientations. The orientations are selected based on a modified version of Eq 2, which is dictated by the mode used. Conflicting nomenclature may be found in literature with regard to mode names. For example, what may be referred to as a ? (psi) diffractometer in Europe may be called a ? (chi) diffractometer in North America. The three modes considered here will be referred to as omega, chi, and modified-chi as described in 9.5.

5.3 Omega Mode (Iso Inclination) and Chi Mode (Side Inclination)—Interplanar strain measurements are performed at multiple ? angles along one f azimuth (let f = 0°) (Figs. 2 and 3), reducing Eq 2 to Eq 3. Stress normal to the surface (s33) is assumed to be insignificant because of the shallow depth of penetration of X-rays at the free surface, reducing Eq 3 to Eq 4. Post-measurement corrections may be applied to account for possible s33 influences (12.12). Since the sij values will remain constant for a given azimuth, the s1{hkl} term is renamed C.

FIG. 2 Omega Mode Diagram for Measurement in s11 Direction

Omega Mode Diagram for Measurement in s Direction Omega Mode Diagram for Measurement in s Direction

FIG. 3 Chi Mode Diagram for Measurement in s11 Direction

Chi Mode Diagram for Measurement in s Direction Chi Mode Diagram for Measurement in s Direction

Note 1: Stress matrix is rotated 90° about the surface normal compared to Fig. 2 and Fig. 14.

Equation E2860-20_6

Equation E2860-20_7

5.3.1 The measured interplanar spacing values are converted to strain using Eq 24, Eq 25, or Eq 26. Eq 4 is used to fit the strain versus sin2? data yielding the values s11, t13, and C. The measurement can then be repeated for multiple phi angles (for example 0, 45, and 90°) to determine the full stress/strain tensor. The value, s11, will influence the overall slope of the data, while t13 is related to the direction and degree of elliptical opening. Fig. 4 shows a simulated d versus sin2? profile for the tensor shown. Here the positive 20-MPa t13 stress results in an elliptical opening in which the positive psi range opens upward and the negative psi range opens downward. A higher t13 value will cause a larger elliptical opening. A negative 20-MPa t13 stress would result in the same elliptical opening only the direction would be reversed with the positive psi range opening downwards and the negative psi range opening upwards as shown in Fig. 5.

FIG. 4 Sample d (2?) Versus sin2? Dataset with s11?= -500 MPa and t13?= +20 MPa

Sample (2?) Versus sin? Dataset with s?= -500 MPa and t?= +20 MPaSample (2?) Versus sin? Dataset with s?= -500 MPa and t?= +20 MPa

FIG. 5 Sample d (2?) Versus sin2? Dataset with s11?= -500 MPa and t13?= -20 MPa

Sample (2?) Versus sin? Dataset with s?= -500 MPa and t?= -20 MPaSample (2?) Versus sin? Dataset with s?= -500 MPa and t?= -20 MPa

5.4 Modified Chi Mode—Interplanar strain measurements are performed at multiple ß angles with a fixed ? offset, ?m?(Fig. 6). Measurements at various ß angles do not provide a constant f angle (Fig. 7), therefore, Eq 2 cannot be simplified in the same manner as for omega and chi mode.

FIG. 6 Modified Chi Mode Diagram for Measurement in s11 Direction

Modified Chi Mode Diagram for Measurement in s Direction Modified Chi Mode Diagram for Measurement in s Direction

FIG. 7 ? and f Angles Versus ß Angle for Modified Chi Mode with ?m?= 12°

? and f Angles Versus ß Angle for Modified Chi Mode with ??= 12°? and f Angles Versus ß Angle for Modified Chi Mode with ??= 12°

5.4.1 Eq 2 shall be rewritten in terms of ß and ?m. Eq 5 and 6 are obtained from the solution for a right-angled spherical triangle (3).

Equation E2860-20_8

Equation E2860-20_9

5.4.2 Substituting f and ? in Eq 2 with Eq 5 and 6 (see X1.1), we get:

Equation E2860-20_10

5.4.3 Stress normal to the surface (s33) is assumed to be insignificant because of the shallow depth of penetration of X-rays at the free surface reducing Eq 7 to Eq 8. Post-measurement corrections may be applied to account for possible s33 influences (see 12.12). Since the sij values and ?m will remain constant for a given azimuth, the s1{hkl} term is renamed C, and the s22 term is renamed D.

Equation E2860-20_11

5.4.4 The s11 influence on the d versus sin2ß plot is similar to omega and chi mode (Fig. 8) with the exception that the slope shall be divided by cos2?m. This increases the effective 1/2 s2{hkl} by a factor of 1/cos2?m for s11.

FIG. 8 Sample d (2?) Versus sin2ß Dataset with s11?= -500 MPa

Sample (2?) Versus sinß Dataset with s?= -500 MPaSample (2?) Versus sinß Dataset with s?= -500 MPa

5.4.5 The tij influences on the d versus sin2ß plot are more complex and are often assumed to be zero (3). However, this may not be true and significant errors in the calculated stress may result. Figs. 9-13 show the d versus sin2ß influences of individual shear components for modified chi mode considering two detector positions (?m?= +12° and ?m?= -12°). Components t12 and t13 cause a symmetrical opening about the s11 slope influence for either detector position (Figs. 9-11), therefore, s11 can still be determined by simply averaging the positive and negative ß data. Fitting the opening to the t12 and t13 terms may be possible, although distinguishing between the two influences through regression is not normally possible.

FIG. 9 Sample d (2?) versus sin2ß Dataset with ?m?= +12°, s11?= -500 MPa, and t12?= -100 MPa

Sample (2?) versus sinß Dataset with ??= +12°, s?= -500 MPa, and t?= -100 MPaSample (2?) versus sinß Dataset with ??= +12°, s?= -500 MPa, and t?= -100 MPa

FIG. 10 Sample d (2?) Versus sin2ß Dataset with ?m?= -12°, s11?= -500 MPa, and t12?= -100 MPa

Sample (2?) Versus sinß Dataset with ??= -12°, s?= -500 MPa, and t?= -100 MPaSample (2?) Versus sinß Dataset with ??= -12°, s?= -500 MPa, and t?= -100 MPa

FIG. 11 Sample d (2?) Versus sin2ß Dataset with ?m?= +12 or -12°, s11?= -500 MPa, and t13?= -100 MPa

Sample (2?) Versus sinß Dataset with ??= +12 or -12°, s?= -500 MPa, and t?= -100 MPaSample (2?) Versus sinß Dataset with ??= +12 or -12°, s?= -500 MPa, and t?= -100 MPa

FIG. 12 Sample d (2?) Versus sin2ß Dataset with ?m?= +12°, s11?= -500 MPa, t23?= -100 MPa, and Measured s11?= -472.5 MPa

Sample (2?) Versus sinß Dataset with ??= +12°, s?= -500 MPa, t?= -100 MPa, and Measured s?= -472.5 MPaSample (2?) Versus sinß Dataset with ??= +12°, s?= -500 MPa, t?= -100 MPa, and Measured s?= -472.5 MPa

FIG. 13 Sample d (2?) Versus sin2ß Dataset with ?m?= -12°, s11?= -500 MPa, t23?= -100 MPa, and Measured s11?= -527.5 MPa

Sample (2?) Versus sinß Dataset with ??= -12°, s?= -500 MPa, t?= -100 MPa, and Measured s?= -527.5 MPaSample (2?) Versus sinß Dataset with ??= -12°, s?= -500 MPa, t?= -100 MPa, and Measured s?= -527.5 MPa

5.4.6 The t23 value affects the d versus sin2ß slope in a similar fashion to s11 for each detector position (Figs. 12 and 13). This is an unwanted effect since the s11 and t23 influence cannot be resolved for one ?m position. In this instance, the t23 shear stress of -100 MPa results in a calculated s11 value of -472.5 MPa for ?m?= +12° or -527.5 MPa for ?m?= -12°, while the actual value is -500 MPa. The value, s11 can still be determined by averaging the ß data for both ?m positions.

5.4.7 The use of the modified chi mode may be used to determine s11 but shall be approached with caution using one ?m position because of the possible presence of a t23 stress. The combination of multiple shear stresses including t23 results in increasingly complex shear influences. Chi and omega mode are preferred over modified chi for these reasons.

Zusätzliche Information

Autor American Society for Testing and Materials (ASTM International)
Komitee E28.13 - Committee E28 on Mechanical Testing
Veröffentlicht von ASTM
Document type Normen
Thema Non-destructive testing of metals
ICS 77.040.20 : Zerstörungsfreie Prüfung von Metallen
Seitenzahl 19
Ersetzt ASTM E2860-12
Sammlung ASTM Volume 03.01 - Multi-User - Single-Site Online
Schlagwort E2860
Bestellformular