II

Part A

Ferrous Material Specifications (Beginning to SA-450)

MATERIALS

ASME Boiler and Pressure Vessel Committee on Materials
This international code or standard was developed under procedures accredited as meeting the criteria for American National Standards and it is an American National Standard. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

The footnotes in this document are part of this American National Standard.
CONTENTS

List of Sections ... ix
Foreword .. xi
Statements of Policy .. xiii
Personnel ... xiv
ASTM Personnel .. xxvi
Preface ... xxvii
Specifications Listed by Materials .. xxviii
Specification Removal .. xxxvi
Guidelines on Submittal of Technical Inquiries to the Boiler and Pressure Vessel Committee .. xxxvii
Guideline on the Approval of New Materials Under the ASME Boiler and Pressure Vessel Code .. xxxix
Guideline on Acceptable ASTM Editions xliii
Guideline on Acceptable Non-ASTM Editions liii
Guidelines on Multiple Marking of Materials lixiv
Summary of Changes ... lvii
List of Changes in Record Number Order lviii

Specifications

SA-6/SA-6M General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling ... 1
SA-20/SA-20M General Requirements for Steel Plates for Pressure Vessels ... 83
SA-29/SA-29M Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements for .. 125
SA-31 Steel Rivets and Bars for Rivets, Pressure Vessels 143
SA-36/SA-36M Carbon Structural Steel 147
SA-47/SA-47M Ferritic Malleable Iron Castings 153
SA-53/SA-53M Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless 161
SA-105/SA-105M Carbon Steel Forgings for Piping Applications .. 189
SA-106/SA-106M Seamless Carbon Steel Pipe for High-Temperature Service ... 195
SA-134 Pipe, Steel, Electric-Fusion (Arc)-Welded (Sizes NPS 16 and Over) ... 207
SA-135 Electric-Resistance-Welded Steel Pipe 213
SA-178/SA-178M Electric-Resistance-Welded Carbon Steel and Carbon-Manganese Steel Boiler and Superheater Tubes .. 223
SA-179/SA-179M Seamless Cold-Drawn Low-Carbon Steel Heat-Exchanger and Condenser Tubes 229
SA-181/SA-181M Carbon Steel Forgings, for General-Purpose Piping .. 233
SA-182/SA-182M Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service 237
SA-192/SA-192M Seamless Carbon Steel Boiler Tubes for High-Pressure Service .. 257
SA-193/SA-193M Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature or High Pressure Service and Other Special Purpose Applications 261
SA-194/SA-194M Carbon and Alloy Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both ... 277
SA-202/SA-202M Pressure Vessel Plates, Alloy Steel, Chromium-Manganese-Silicon 293
SA-203/SA-203M Pressure Vessel Plates, Alloy Steel, Nickel ... 297
SA-204/SA-204M Pressure Vessel Plates, Alloy Steel, Molybdenum .. 301
<p>| SA-209/SA-209M | Seamless Carbon-Molybdenum Alloy-Steel Boiler and Superheater Tubes | 305 |
| SA-210/SA-210M | Seamless Medium-Carbon Steel Boiler and Superheater Tubes | 311 |
| SA-213/SA-213M | Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes | 315 |
| SA-216/SA-216M | Steel Castings, Carbon, Suitable for Fusion Welding for High-Temperature Service | 331 |
| SA-217/SA-217M | Steel Castings, Martensitic Stainless and Alloy, for Pressure-Containing Parts, Suitable for High-Temperature Service | 335 |
| SA-225/SA-225M | Pressure Vessel Plates, Alloy Steel, Manganese-Vanadium-Nickel | 341 |
| SA-231/SA-231M | Chromium-Vanadium Alloy Steel Spring Wire | 345 |
| SA-232/SA-232M | Chromium-Vanadium Alloy Steel Valve Spring Quality Wire | 351 |
| SA-234/SA-234M | Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High-Temperature Service | 355 |
| SA-240/SA-240M | Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications | 365 |
| SA-249/SA-249M | Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes | 377 |
| SA-250/SA-250M | Electric-Resistance-Welded Ferritic Alloy-Steel Boiler and Superheater Tubes | 387 |
| SA-263 | Stainless Chromium Steel-Clad Plate | 393 |
| SA-264 | Stainless Chromium-Nickel Steel-Clad Plate | 401 |
| SA-265 | Nickel and Nickel-Base Alloy-Clad Steel Plate | 409 |
| SA-266/SA-266M | Carbon Steel Forgings for Pressure Vessel Components | 417 |
| SA-268/SA-268M | Seamless and Welded Ferritic and Martensitic Stainless Steel Tubing for General Service | 423 |
| SA-275/SA-275M | Magnetic Particle Examination of Steel Forgings | 433 |
| SA-276 | Stainless Steel Bars and Shapes | 441 |
| SA-278/SA-278M | Gray Iron Castings for Pressure-Containing Parts for Temperatures Up to 650°F (350°C) | 451 |
| SA-283/SA-283M | Low and Intermediate Tensile Strength Carbon Steel Plates | 457 |
| SA-299/SA-299M | Pressure Vessel Plates, Carbon Steel, Manganese-Silicon | 465 |
| SA-302/SA-302M | Pressure Vessel Plates, Alloy Steel, Manganese-Molybdenum and Manganese-Molybdenum-Nickel | 469 |
| SA-307 | Carbon Steel Bolts and Studs, 60 000 psi Tensile Strength | 473 |
| SA-311/SA-311M | Cold-Drawn, Stress-Relieved Carbon Steel Bars Subject to Mechanical Property Requirements | 481 |
| SA-312/SA-312M | Seamless and Welded Austenitic Stainless Steel Pipes | 487 |
| SA-320/SA-320M | Alloy Steel and Stainless Steel Bolting Materials for Low-Temperature Service | 499 |
| SA-325 | Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength | 509 |
| SA-333/SA-333M | Seamless and Welded Steel Pipe for Low-Temperature Service | 519 |
| SA-334/SA-334M | Seamless and Welded Carbon and Alloy-Steel Tubes for Low-Temperature Service | 531 |
| SA-335/SA-335M | Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service | 541 |
| SA-336/SA-336M | Alloy Steel Forgings for Pressure and High-Temperature Parts | 555 |
| SA-350/SA-350M | Carbon and Low-Alloy Steel Forgings, Requiring Notch Toughness Testing for Piping Components | 563 |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-351/SA-351M</td>
<td>Castings, Austenitic, Austenitic-Ferritic (Duplex), for Pressure-Containing Parts</td>
<td>575</td>
</tr>
<tr>
<td>SA-352/SA-352M</td>
<td>Steel Castings, Ferritic and Martensitic, for Pressure Containing Parts, Suitable for Low-Temperature Service</td>
<td>583</td>
</tr>
<tr>
<td>SA-353/SA-353M</td>
<td>Pressure Vessel Plates, Alloy Steel, 9 Percent Nickel, Double-Normalized and Tempered</td>
<td>591</td>
</tr>
<tr>
<td>SA-354</td>
<td>Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners</td>
<td>597</td>
</tr>
<tr>
<td>SA-358/SA-358M</td>
<td>Electric-Fusion-Welded Austenitic Chromium-Nickel Alloy Steel Pipe for High-Temperature Service</td>
<td>605</td>
</tr>
<tr>
<td>SA-369/SA-369M</td>
<td>Carbon and Ferritic Alloy Steel Forged and Bored Pipe for High-Temperature Service</td>
<td>615</td>
</tr>
<tr>
<td>SA-370</td>
<td>Test Methods and Definitions for Mechanical Testing of Steel Products</td>
<td>621</td>
</tr>
<tr>
<td>SA-372/SA-372M</td>
<td>Carbon and Alloy Steel Forgings for Thin-Walled Pressure Vessels</td>
<td>679</td>
</tr>
<tr>
<td>SA-376/SA-376M</td>
<td>Seamless Austenitic Steel Pipe for High-Temperature Central-Station Service</td>
<td>685</td>
</tr>
<tr>
<td>SA-387/SA-387M</td>
<td>Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum</td>
<td>695</td>
</tr>
<tr>
<td>SA-388/SA-388M</td>
<td>Ultrasonic Examination of Heavy Steel Forgings</td>
<td>703</td>
</tr>
<tr>
<td>SA-395/SA-395M</td>
<td>Ferritic Ductile Iron Pressure-Retaining Castings for Use at Elevated Temperatures</td>
<td>713</td>
</tr>
<tr>
<td>SA-403/SA-403M</td>
<td>Wrought Austenitic Stainless Steel Piping Fittings</td>
<td>725</td>
</tr>
<tr>
<td>SA-409/SA-409M</td>
<td>Welded Large Diameter Austenitic Steel Pipe for Corrosive or High-Temperature Service</td>
<td>735</td>
</tr>
<tr>
<td>SA-414/SA-414M</td>
<td>Steel, Sheet, Carbon, for Pressure Vessels</td>
<td>745</td>
</tr>
<tr>
<td>SA-420/SA-420M</td>
<td>Piping Fittings of Wrought Carbon Steel and Alloy Steel for Low-Temperature Service</td>
<td>749</td>
</tr>
<tr>
<td>SA-423/SA-423M</td>
<td>Seamless and Electric-Welded Low-Alloy Steel Tubes</td>
<td>759</td>
</tr>
<tr>
<td>SA-426/SA-426M</td>
<td>Centrifugally Cast Ferritic Alloy Steel Pipe for High-Temperature Service</td>
<td>765</td>
</tr>
<tr>
<td>SA-435/SA-435M</td>
<td>Straight-Beam Ultrasonic Examination of Steel Plates</td>
<td>771</td>
</tr>
<tr>
<td>SA-437/SA-437M</td>
<td>Alloy Steel Turbine-Type Bolting Material Specially Heat Treated for High-Temperature Service</td>
<td>775</td>
</tr>
<tr>
<td>SA-449</td>
<td>Hex Cap Screws, Bolts and Studs, Steel, Heat Treated, 120/105/90 ksi Minimum Tensile Strength, General Use</td>
<td>781</td>
</tr>
<tr>
<td>SA-450/SA-450M</td>
<td>General Requirements for Carbon, Ferritic Alloy, and Austenitic Alloy Steel Tubes</td>
<td>793</td>
</tr>
<tr>
<td>SA-451/SA-451M</td>
<td>Centrifugally Cast Austenitic Steel Pipe for High-Temperature Service</td>
<td>805</td>
</tr>
<tr>
<td>SA-453/SA-453M</td>
<td>High-Temperature Bolting Materials With Expansion Coefficients Comparable to Austenitic Steels</td>
<td>811</td>
</tr>
<tr>
<td>SA-455/SA-455M</td>
<td>Pressure Vessel Plates, Carbon Steel, High-Strength Manganese</td>
<td>821</td>
</tr>
<tr>
<td>SA-479/SA-479M</td>
<td>Stainless Steel Bars and Shapes for Use in Boilers and Other Pressure Vessels</td>
<td>831</td>
</tr>
<tr>
<td>SA-480/SA-480M</td>
<td>General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip</td>
<td>843</td>
</tr>
<tr>
<td>SA-484/SA-484M</td>
<td>General Requirements for Stainless Steel Bars, Billets, and Forgings</td>
<td>871</td>
</tr>
<tr>
<td>SA-487/SA-487M</td>
<td>Steel Castings Suitable for Pressure Service</td>
<td>887</td>
</tr>
<tr>
<td>SA-494/SA-494M</td>
<td>Castings, Nickel and Nickel Alloy</td>
<td>895</td>
</tr>
<tr>
<td>SA-508/SA-508M</td>
<td>Quenched and Tempered Vacuum-Treated Carbon and Alloy Steel Forgings for Pressure Vessels</td>
<td>897</td>
</tr>
<tr>
<td>SA-513</td>
<td>Electric-Resistance-Welded Carbon and Alloy Steel Mechanical Tubing</td>
<td>907</td>
</tr>
<tr>
<td>SA-515/SA-515M</td>
<td>Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature Service</td>
<td>933</td>
</tr>
<tr>
<td>Specification</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>SA-516/SA-516M</td>
<td>Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service</td>
<td>937</td>
</tr>
<tr>
<td>SA-517/SA-517M</td>
<td>Pressure Vessel Plates, Alloy Steel, High Strength, Quenched and Tempered</td>
<td>943</td>
</tr>
<tr>
<td>SA-522/SA-522M</td>
<td>Forged or Rolled 8 and 9% Nickel Alloy Steel Flanges, Fittings,</td>
<td>947</td>
</tr>
<tr>
<td>SA-524</td>
<td>Seamless Carbon Steel Pipe for Atmospheric and Lower Temperatures</td>
<td>953</td>
</tr>
<tr>
<td>SA-530/SA-530M</td>
<td>General Requirements for Specialized Carbon and Alloy Steel Pipe</td>
<td>963</td>
</tr>
<tr>
<td>SA-533/SA-533M</td>
<td>Pressure Vessel Plates, Alloy Steel, Quenched and Tempered, Manganese-Molybdenum and Manganese-Molybdenum-Nickel</td>
<td>973</td>
</tr>
<tr>
<td>SA-537/SA-537M</td>
<td>Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel</td>
<td>979</td>
</tr>
<tr>
<td>SA-540/SA-540M</td>
<td>Alloy Steel Bolting Materials for Special Applications</td>
<td>985</td>
</tr>
<tr>
<td>SA-541/SA-541M</td>
<td>Quenched and Tempered Carbon and Alloy Steel Forgings for Pressure Vessel Components</td>
<td>993</td>
</tr>
<tr>
<td>SA-543/SA-543M</td>
<td>Pressure Vessel Plates, Alloy Steel, Quenched and Tempered, Nickel-Chromium-Molybdenum</td>
<td>1009</td>
</tr>
<tr>
<td>SA-553/SA-553M</td>
<td>Pressure Vessel Plates, Alloy Steel, Quenched and Tempered 8 and 9% Nickel</td>
<td>1013</td>
</tr>
<tr>
<td>SA-556/SA-556M</td>
<td>Seamless Cold-Drawn Carbon Steel Feedwater Heater Tubes</td>
<td>1019</td>
</tr>
<tr>
<td>SA-557/SA-557M</td>
<td>Electric-Resistance-Welded Carbon Steel Feedwater Heater Tubes</td>
<td>1025</td>
</tr>
<tr>
<td>SA-562/SA-562M</td>
<td>Pressure Vessel Plates, Carbon Steel, Manganese-Titanium for Glass or Diffused Metallic Coatings</td>
<td>1031</td>
</tr>
<tr>
<td>SA-563</td>
<td>Carbon and Alloy Steel Nuts</td>
<td>1035</td>
</tr>
<tr>
<td>SA-564/SA-564M</td>
<td>Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes</td>
<td>1047</td>
</tr>
<tr>
<td>SA-568/SA-568M</td>
<td>Steel, Sheet, Carbon Structural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, General Requirements for</td>
<td>1057</td>
</tr>
<tr>
<td>SA-572/SA-572M</td>
<td>High-Strength Low-Alloy Columbium-Vanadium Structural Steel</td>
<td>1091</td>
</tr>
<tr>
<td>SA-574</td>
<td>Alloy Steel Socket-Head Cap Screws</td>
<td>1097</td>
</tr>
<tr>
<td>SA-577/SA-577M</td>
<td>Ultrasonic Angle-Beam Examination of Steel Plates</td>
<td>1105</td>
</tr>
<tr>
<td>SA-578/SA-578M</td>
<td>Straight-Beam Ultrasonic Examination of Rolled Steel Plates for Special Applications</td>
<td>1109</td>
</tr>
<tr>
<td>SA-578</td>
<td>Electric-Resistance-Welded Low-Carbon Steel Pipe for the Chemical Industry</td>
<td>1115</td>
</tr>
<tr>
<td>SA-592/SA-592M</td>
<td>High-Strength Quenched and Tempered Low-Alloy Steel Forged Fittings and Parts for Pressure Vessels</td>
<td>1123</td>
</tr>
<tr>
<td>SA-609/SA-609M</td>
<td>Castings, Carbon, Low-Alloy, and Martensitic Stainless Steel, Ultrasonic Examination Thereof</td>
<td>1127</td>
</tr>
<tr>
<td>SA-612/SA-612M</td>
<td>Pressure Vessel Plates, Carbon Steel, High Strength, for Moderate and Lower Temperature Service</td>
<td>1139</td>
</tr>
<tr>
<td>SA-638/SA-638M</td>
<td>Precipitation Hardening Iron Base Superalloy Bars, Forgings, and Forging Stock for High-Temperature Service</td>
<td>1143</td>
</tr>
<tr>
<td>SA-645/SA-645M</td>
<td>Pressure Vessel Plates, 5% and 5½% Nickel Alloy Steels, Specially Heat Treated</td>
<td>1147</td>
</tr>
<tr>
<td>SA-649/SA-649M</td>
<td>Forged Steel Rolls Used for Corrugating Paper Machinery</td>
<td>1153</td>
</tr>
<tr>
<td>SA-656/SA-656M</td>
<td>Hot-Rolled Structural Steel, High-Strength Low-Alloy Plate With Improved Formability</td>
<td>1159</td>
</tr>
<tr>
<td>SA-660</td>
<td>Centrifugally Cast Carbon Steel Pipe for High-Temperature Service</td>
<td>1161</td>
</tr>
<tr>
<td>SA-662/SA-662M</td>
<td>Pressure Vessel Plates, Carbon-Manganese-Silicon Steel, for Moderate and Lower Temperature Service</td>
<td>1167</td>
</tr>
</tbody>
</table>
SA-666 Annealed or Cold-Worked Austenitic Stainless Steel, Sheet, Strip, Plate, and Flat Bar .. 1173
SA-667/SA-667M Centrifugally Cast Dual Metal (Gray and White Cast Iron) Cylinders 1183
SA-671 Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures 1185
SA-672 Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures .. 1195
SA-675/SA-675M Steel Bars, Carbon, Hot-Wrought, Special Quality, Mechanical Properties 1203
SA-688/SA-688M Welded Austenitic Stainless Steel Feedwater Heater Tubes 1209
SA-691 Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures . 1219
SA-693 Precipitation-Hardening Stainless and Heat-Resisting Steel Plate, Sheet, and Strip 1227
SA-695 Steel Bars, Carbon, Hot-Wrought, Special Quality, for Fluid Power Applications 1235
SA-696 Steel Bars, Carbon, Hot-Wrought or Cold-Finished, Special Quality, for Pressure Piping Components .. 1239
SA-703/SA-703M Steel Castings, General Requirements, for Pressure-Containing Parts 1243
SA-705/SA-705M Age-Hardening Stainless Steel Forgings .. 1263
SA-723/SA-723M Alloy Steel Forgings for High-Strength Pressure Component Application 1271
SA-724/SA-724M Pressure Vessel Plates, Carbon-Manganese-Silicon Steel, Quenched and Tempered, for Welded Layered Pressure Vessels 1277
SA-727/SA-727M Carbon Steel Forgings for Piping Components With Inherent Notch Toughness 1281
SA-731/SA-731M Seamless, Welded Ferritic, and Martensitic Stainless Steel Pipe 1287
SA-736/SA-736M Pressure Vessel Plates, Low-Carbon Age-Hardening Nickel-Copper-Chromium-Molybdenum-Columbium and Nickel-Copper-Manganese-Molybdenum-Columbium Alloy Steel 1293
SA-737/SA-737M Pressure Vessel Plates, High-Strength, Low-Alloy Steel 1299
SA-738/SA-738M Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel, for Moderate and Lower Temperature Service 1303
SA-739 Steel Bars, Alloy, Hot-Wrought, for Elevated Temperature or Pressure-Containing Parts, or Both 1309
SA-745/SA-745M Ultrasonic Examination of Austenitic Steel Forgings 1313
SA-747/SA-747M Steel Castings, Stainless, Precipitation Hardening 1319
SA-748/SA-748M Statically Cast Chilled White Iron-Gray Iron Dual Metal Rolls for Pressure Vessel Use 1325
SA-749/SA-749M Steel, Strip, Carbon and High-Strength, Low-Alloy, Hot-Rolled, General Requirements for 1327
SA-751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products 1337
SA-765/SA-765M Carbon Steel and Low-Alloy Steel Pressure-Vessel-Component Forgings With Mandatory Toughness Requirements 1345
SA-770/SA-770M Through-Thickness Tension Testing of Steel Plates for Special Applications 1353
SA-781/SA-781M Castings, Steel and Alloy, Common Requirements, for General Industrial Use 1361
SA-788/SA-788M Steel Forgings, General Requirements 1379
SA-789/SA-789M Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service 1395
SA-790/SA-790M Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe 1403
SA-803/SA-803M Welded Ferritic Stainless Steel Feedwater Heater Tubes 1415
<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-813/SA-813M</td>
<td>Single- or Double-Welded Austenitic Stainless Steel Pipe</td>
<td>1427</td>
</tr>
<tr>
<td>SA-814/SA-814M</td>
<td>Cold-Worked Welded Austenitic Stainless Steel Pipe</td>
<td>1437</td>
</tr>
<tr>
<td>SA-815/SA-815M</td>
<td>Wrought Ferritic, Ferritic/Austenitic, and Martensitic Stainless Steel Piping Fittings</td>
<td>1445</td>
</tr>
<tr>
<td>SA-832/SA-832M</td>
<td>Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum-Vanadium</td>
<td>1455</td>
</tr>
<tr>
<td>SA-834</td>
<td>Common Requirements for Iron Castings for General Industrial Use</td>
<td>1461</td>
</tr>
<tr>
<td>SA-836/SA-836M</td>
<td>Titanium-Stabilized Carbon Steel Forgings for Glass-Lined Piping and Pressure Vessel Service</td>
<td>1465</td>
</tr>
<tr>
<td>SA-841/SA-841M</td>
<td>Steel Plates for Pressure Vessels, Produced by Thermo-Mechanical Control Process (TMCP)</td>
<td>1469</td>
</tr>
<tr>
<td>SA-905</td>
<td>Steel Wire, Pressure Vessel Winding</td>
<td>1479</td>
</tr>
<tr>
<td>SA-941</td>
<td>Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys</td>
<td>1485</td>
</tr>
<tr>
<td>SA-960/SA-960M</td>
<td>Common Requirements for Wrought Steel Piping Fittings</td>
<td>1493</td>
</tr>
<tr>
<td>SA-961/SA-961M</td>
<td>Common Requirements for Steel Flanges, Forged Fittings, Valves and Parts for Piping Applications</td>
<td>1505</td>
</tr>
<tr>
<td>SA-962/SA-962M</td>
<td>Common Requirements for Steel Fasteners or Fastener Materials, or Both, Intended for Use at Any Temperature From Cryogenic to the Creep Range</td>
<td>1517</td>
</tr>
<tr>
<td>SA-965/SA-965M</td>
<td>Steel Forgings, Austenitic, for Pressure and High Temperature Parts</td>
<td>1531</td>
</tr>
<tr>
<td>SA-985/SA-985M</td>
<td>Steel Investment Castings General Requirements, for Pressure-Containing Parts</td>
<td>1539</td>
</tr>
<tr>
<td>SA-995</td>
<td>Castings, Austenitic-Ferritic (Duplex) Stainless Steel, for Pressure-Containing Parts</td>
<td>1559</td>
</tr>
<tr>
<td>SA-999/SA-999M</td>
<td>General Requirements for Alloy and Stainless Steel Pipe</td>
<td>1563</td>
</tr>
<tr>
<td>SA-1008/SA-1008M</td>
<td>Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy With Improved Formability</td>
<td>1577</td>
</tr>
<tr>
<td>SA-1010/SA-1010M</td>
<td>Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip</td>
<td>1587</td>
</tr>
<tr>
<td>SA-1011/SA-1011M</td>
<td>Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy With Improved Formability, and Ultra-High Strength</td>
<td>1591</td>
</tr>
<tr>
<td>SA-1016/SA-1016M</td>
<td>General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes</td>
<td>1601</td>
</tr>
<tr>
<td>SA-1017/SA-1017M</td>
<td>Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum-Tungsten</td>
<td>1617</td>
</tr>
<tr>
<td>SF-568M</td>
<td>Carbon and Alloy Steel Externally Threaded Metric Fasteners</td>
<td>1623</td>
</tr>
<tr>
<td>SA/AS 1548</td>
<td>Steel Plates for Pressure Equipment</td>
<td>1635</td>
</tr>
<tr>
<td>SA/CSA-G40.21</td>
<td>Structural Quality Steels</td>
<td>1637</td>
</tr>
<tr>
<td>SA/EN 10028-2</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 2: Non-Alloy and Alloy Steels With Specified Elevated Temperature Properties</td>
<td>1639</td>
</tr>
<tr>
<td>SA/EN 10028-3</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 3: Weldable Fine Grain Steels, Normalized</td>
<td>1641</td>
</tr>
<tr>
<td>SA/EN 10028-7</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 7: Stainless Steels</td>
<td>1643</td>
</tr>
<tr>
<td>SA/GB 6654</td>
<td>Steel Plates for Pressure Vessels</td>
<td>1645</td>
</tr>
<tr>
<td>SA/JIS G3118</td>
<td>Carbon Steel Plates for Pressure Vessels for Intermediate and Moderate Temperature Service</td>
<td>1647</td>
</tr>
<tr>
<td>SA/JIS G4303</td>
<td>Stainless Steel Bars</td>
<td>1649</td>
</tr>
</tbody>
</table>

MANDATORY APPENDIX

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Standard Units for Use in Equations</td>
<td>1651</td>
</tr>
</tbody>
</table>

NONMANDATORY APPENDIX

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sources of Standards</td>
<td>1653</td>
</tr>
</tbody>
</table>
2010 ASME
BOILER AND PRESSURE VESSEL CODE

SECTIONS
I Rules for Construction of Power Boilers
II Materials
 Part A — Ferrous Material Specifications
 Part B — Nonferrous Material Specifications
 Part C — Specifications for Welding Rods, Electrodes, and Filler Metals
 Part D — Properties (Customary)
 Part D — Properties (Metric)
III Rules for Construction of Nuclear Facility Components
 Subsection NCA — General Requirements for Division 1 and Division 2
 Division 1
 Subsection NB — Class 1 Components
 Subsection NC — Class 2 Components
 Subsection ND — Class 3 Components
 Subsection NE — Class MC Components
 Subsection NF — Supports
 Subsection NG — Core Support Structures
 Subsection NH — Class 1 Components in Elevated Temperature Service
 Appendices
 Division 2 — Code for Concrete Containments
 Division 3 — Containments for Transportation and Storage of Spent Nuclear Fuel
 and High Level Radioactive Material and Waste
IV Rules for Construction of Heating Boilers
V Nondestructive Examination
VI Recommended Rules for the Care and Operation of Heating Boilers
VII Recommended Guidelines for the Care of Power Boilers
VIII Rules for Construction of Pressure Vessels
 Division 1
 Division 2 — Alternative Rules
 Division 3 — Alternative Rules for Construction of High Pressure Vessels
IX Welding and Brazing Qualifications
X Fiber-Reinforced Plastic Pressure Vessels
XI Rules for Inservice Inspection of Nuclear Power Plant Components
XII Rules for Construction and Continued Service of Transport Tanks
ADDENDA

Addenda, which include additions and revisions to individual Sections of the Code, will be sent automatically to purchasers of the applicable Sections up to the publication of the 2013 Code. The 2010 Code is available only in the loose-leaf format; accordingly, the Addenda will be issued in the loose-leaf, replacement-page format.

INTERPRETATIONS

ASME issues written replies to inquiries concerning interpretation of technical aspects of the Code. The Interpretations for each individual Section will be published separately and will be included as part of the update service to that Section. Interpretations of Section III, Divisions 1 and 2, will be included with the update service to Subsection NCA.

Interpretations of the Code are posted in January and July at www.cstools.asme.org/interpretations.

CODE CASES

The Boiler and Pressure Vessel Committee meets regularly to consider proposed additions and revisions to the Code and to formulate Cases to clarify the intent of existing requirements or provide, when the need is urgent, rules for materials or constructions not covered by existing Code rules. Those Cases that have been adopted will appear in the appropriate 2010 Code Cases book: “Boilers and Pressure Vessels” and “Nuclear Components.” Supplements will be sent automatically to the purchasers of the Code Cases books up to the publication of the 2013 Code.
The American Society of Mechanical Engineers set up a committee in 1911 for the purpose of formulating standard rules for the construction of steam boilers and other pressure vessels. This committee is now called the Boiler and Pressure Vessel Committee.

The Committee’s function is to establish rules of safety, relating only to pressure integrity, governing the construction of boilers, pressure vessels, transport tanks and nuclear components, and inservice inspection for pressure integrity of nuclear components and transport tanks, and to interpret these rules when questions arise regarding their intent. This code does not address other safety issues relating to the construction of boilers, pressure vessels, transport tanks and nuclear components, and the inservice inspection of nuclear components and transport tanks. The user of the Code should refer to other pertinent codes, standards, laws, regulations, or other relevant documents. With few exceptions, the rules do not, of practical necessity, reflect the likelihood and consequences of deterioration in service related to specific service fluids or external operating environments. Recognizing this, the Committee has approved a wide variety of construction rules in this Section to allow the user or his designee to select those which will provide a pressure vessel having a margin for deterioration in service so as to give a reasonably long, safe period of usefulness. Accordingly, it is not intended that this Section be used as a design handbook; rather, engineering judgment must be employed in the selection of those sets of Code rules suitable to any specific service or need.

This Code contains mandatory requirements, specific prohibitions, and nonmandatory guidance for construction activities. The Code does not address all aspects of these activities and those aspects which are not specifically addressed should not be considered prohibited. The Code is not a handbook and cannot replace education, experience, and the use of engineering judgment. The phrase engineering judgment refers to technical judgments made by knowledgeable designers experienced in the application of the Code. Engineering judgments must be consistent with Code philosophy and such judgments must never be used to overrule mandatory requirements or specific prohibitions of the Code.

The Committee recognizes that tools and techniques used for design and analysis change as technology progresses and expects engineers to use good judgment in the application of these tools. The designer is responsible for complying with Code rules and demonstrating compliance with Code equations when such equations are mandatory. The Code neither requires nor prohibits the use of computers for the design or analysis of components constructed to the requirements of the Code. However, designers and engineers using computer programs for design or analysis are cautioned that they are responsible for all technical assumptions inherent in the programs they use and they are responsible for the application of these programs to their design.

The Code does not fully address tolerances. When dimensions, sizes, or other parameters are not specified with tolerances, the values of these parameters are considered nominal and allowable tolerances or local variances may be considered acceptable when based on engineering judgment and standard practices as determined by the designer.

The Boiler and Pressure Vessel Committee deals with the care and inspection of boilers and pressure vessels in service only to the extent of providing suggested rules of good practice as an aid to owners and their inspectors.

The rules established by the Committee are not to be interpreted as approving, recommending, or endorsing any proprietary or specific design or as limiting in any way the manufacturer’s freedom to choose any method of design or any form of construction that conforms to the Code rules.

The Boiler and Pressure Vessel Committee meets regularly to consider revisions of the rules, new rules as dictated by technological development, Code Cases, and requests for interpretations. Only the Boiler and Pressure Vessel Committee has the authority to provide official interpretations of this Code. Requests for revisions, new rules, Code Cases, or interpretations shall be addressed to the Secretary in writing and shall give full particulars in order to receive consideration and action (see Mandatory Appendix covering preparation of technical inquiries). Proposed revisions to the Code resulting from inquiries will be presented to the Main Committee for appropriate action. The action of the Main Committee becomes effective only after confirmation by letter ballot of the Committee and approval by ASME.
Proposed revisions to the Code approved by the Committee are submitted to the American National Standards Institute and published at http://cstools.asme.org/csconnect/public/index.cfm?PublicReview=Revisions to invite comments from all interested persons. After the allotted time for public review and final approval by ASME, revisions are published in updates to the Code.

Code Cases may be used in the construction of components to be stamped with the ASME Code symbol beginning with the date of their approval by ASME.

After Code revisions are approved by ASME, they may be used beginning with the date of issuance. Revisions, except for revisions to material specifications in Section II, Parts A and B, become mandatory six months after such date of issuance, except for boilers or pressure vessels contracted for prior to the end of the six-month period. Revisions to material specifications are originated by the American Society for Testing and Materials (ASTM) and other recognized national or international organizations, and are usually adopted by ASME. However, those revisions may or may not have any effect on the suitability of material, produced to earlier editions of specifications, for use in ASME construction. ASME material specifications approved for use in each construction Code are listed in the Guidelines for Acceptable ASTM Editions and in the Guidelines for Acceptable Non-ASTM Editions, in Section II, Parts A and B. These Guidelines list, for each specification, the latest edition adopted by ASME, and earlier and later editions considered by ASME to be identical for ASME construction.

The Boiler and Pressure Vessel Committee in the formulation of its rules and in the establishment of maximum design and operating pressures considers materials, construction, methods of fabrication, inspection, and safety devices.

The Code Committee does not rule on whether a component shall or shall not be constructed to the provisions of the Code. The Scope of each Section has been established to identify the components and parameters considered by the Committee in formulating the Code rules.

Questions or issues regarding compliance of a specific component with the Code rules are to be directed to the ASME Boiler and Pressure Vessel Committee. ASME is to be notified should questions arise concerning improper use of an ASME Code symbol.

The specifications for materials given in Section II are identical with or similar to those of specifications published by ASTM, AWS, and other recognized national or international organizations. When reference is made in an ASME material specification to a non-ASME specification for which a companion ASME specification exists, the reference shall be interpreted as applying to the ASME material specification. Not all materials included in the material specifications in Section II have been adopted for Code use. Usage is limited to those materials and grades adopted by at least one of the other Sections of the Code for application under rules of that Section. All materials allowed by these various Sections and used for construction within the scope of their rules shall be furnished in accordance with material specifications contained in Section II or referenced in the Guidelines for Acceptable ASTM Editions in Section II, Parts A and B, except where otherwise provided in Code Cases or in the applicable Section of the Code. Materials covered by these specifications are acceptable for use in items covered by the Code Sections only to the degree indicated in the applicable Section. Materials for Code use should preferably be ordered, produced, and documented on this basis; Guidelines for Acceptable ASTM Editions in Section II, Part A and Guidelines for Acceptable ASTM Editions in Section II, Part B list editions of ASME and year dates of specifications that meet ASME requirements and which may be used in Code construction. Material produced to an acceptable specification with requirements different from the requirements of the corresponding specifications listed in the Guidelines for Acceptable ASTM Editions in Part A or Part B may also be used in accordance with the above, provided the material manufacturer or vessel manufacturer certifies with evidence acceptable to the Authorized Inspector that the corresponding requirements of specifications listed in the Guidelines for Acceptable ASTM Editions in Part A or Part B have been met. Material produced to an acceptable material specification is not limited as to country of origin.

When required by context in this Section, the singular shall be interpreted as the plural, and vice-versa; and the feminine, masculine, or neuter gender shall be treated as such other gender as appropriate.
STATEMENT OF POLICY
ON THE USE OF CODE SYMBOLS AND
CODE AUTHORIZATION IN ADVERTISING

ASME has established procedures to authorize qualified organizations to perform various activities in accordance with the requirements of the ASME Boiler and Pressure Vessel Code. It is the aim of the Society to provide recognition of organizations so authorized. An organization holding authorization to perform various activities in accordance with the requirements of the Code may state this capability in its advertising literature.

Organizations that are authorized to use Code Symbols for marking items or constructions that have been constructed and inspected in compliance with the ASME Boiler and Pressure Vessel Code are issued Certificates of Authorization. It is the aim of the Society to maintain the standing of the Code Symbols for the benefit of the users, the enforcement jurisdictions, and the holders of the symbols who comply with all requirements.

Based on these objectives, the following policy has been established on the usage in advertising of facsimiles of the symbols, Certificates of Authorization, and reference to Code construction. The American Society of Mechanical Engineers does not “approve,” “certify,” “rate,” or “endorse” any item, construction, or activity and there shall be no statements or implications that might so indicate. An organization holding a Code Symbol and/or a Certificate of Authorization may state in advertising literature that items, constructions, or activities “are built (produced or performed) or activities conducted in accordance with the requirements of the ASME Boiler and Pressure Vessel Code,” or “meet the requirements of the ASME Boiler and Pressure Vessel Code.” An ASME corporate logo shall not be used by any organization other than ASME.

The ASME Symbol shall be used only for stamping and nameplates as specifically provided in the Code. However, facsimiles may be used for the purpose of fostering the use of such construction. Such usage may be by an association or a society, or by a holder of a Code Symbol who may also use the facsimile in advertising to show that clearly specified items will carry the symbol. General usage is permitted only when all of a manufacturer’s items are constructed under the rules.

STATEMENT OF POLICY
ON THE USE OF ASME MARKING
TO IDENTIFY MANUFACTURED ITEMS

The ASME Boiler and Pressure Vessel Code provides rules for the construction of boilers, pressure vessels, and nuclear components. This includes requirements for materials, design, fabrication, examination, inspection, and stamping. Items constructed in accordance with all of the applicable rules of the Code are identified with the official Code Symbol Stamp described in the governing Section of the Code.

Markings such as “ASME,” “ASME Standard,” or any other marking including “ASME” or the various Code Symbols shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code.

Items shall not be described on ASME Data Report Forms nor on similar forms referring to ASME that tend to imply that all Code requirements have been met when, in fact, they have not been. Data Report Forms covering items not fully complying with ASME requirements should not refer to ASME or they should clearly identify all exceptions to the ASME requirements.
PERSONNEL
ASME Boiler and Pressure Vessel Standards Committees,
Subgroups, and Working Groups
As of January 1, 2010

TECHNICAL OVERSIGHT MANAGEMENT COMMITTEE (TOMC)

J. G. Feldstein, Chair
T. P. Pastor, Vice Chair
J. S. Brzuszkiewicz, Staff Secretary
R. W. Barnes
R. J. Basile
J. E. Baty
D. L. Berger
M. N. Bressler
D. A. Canonico
R. P. Deubler
D. A. Douin
D. Eisberg
R. E. Gimpel
M. Gold
T. E. Hansen

J. F. Henry
C. L. Hofmann
G. G. Karcher
W. M. Lundy
J. R. MacKay
U. R. Miller
P. A. Molvie
W. E. Norris
G. C. Park
M. D. Rana
B. W. Roberts
S. C. Roberts
F. J. Schaaf, Jr.
A. Selz
R. W. Swayne

HONORARY MEMBERS (MAIN COMMITTEE)

F. P. Barton
R. J. Cepluch
L. J. Chockie
T. M. Cullen
W. D. Doty
J. R. Farr
G. E. Feigel
R. C. Griffith
O. F. Hedden
E. J. Hemzy

M. H. Jawad
A. J. Justin
W. G. Knecht
J. LeCoff
T. G. McCarty
G. C. Millman
R. A. Moen
R. F. Reedy
K. T. Tam
L. P. Zick, Jr.

ADMINISTRATIVE COMMITTEE

J. S. Brzuszkiewicz, Staff Secretary
R. W. Barnes
J. E. Baty
D. L. Berger
D. Eisberg

J. G. Feldstein
J. F. Henry
P. A. Molvie
G. C. Park
T. P. Pastor
A. Selz

HONORS AND AWARDS COMMITTEE

M. Gold, Chair
F. E. Gregor, Vice Chair
T. Schellens, Staff Secretary
D. R. Sharp, Staff Secretary
R. J. Basile
J. E. Baty
D. L. Berger
J. G. Feldstein

W. L. Haag, Jr.
S. F. Harrison, Jr.
R. M. Jesse
W. C. LaRochele
T. P. Pastor
A. Selz
R. R. Stevenson

MARINE CONFERENCE GROUP

H. N. Patel, Chair
J. G. Hungerbuhler, Jr.

G. Pallichadath
J. D. Reynolds

CONFERENCE COMMITTEE

R. J. Aben, Jr. — Michigan (Chair)
R. D. Reetz — North Dakota (Vice Chair)
D. A. Douin — Ohio (Secretary)
J. S. Aclaro — California
J. T. Amato — Minnesota
B. P. Anthony — Rhode Island
R. D. Austin — Arizona
E. W. Bacheller — Nunavut, Canada
B. F. Bailey — Illinois
J. E. Bell — Michigan
W. K. Brigham — New Hampshire
M. A. Burns — Florida
J. H. Burpee — Maine
C. B. Cantrell — Nebraska
D. C. Cook — California
J. A. Davenport — Pennsylvania
S. Donovan — Northwest Territories, Canada
D. Eastman — Newfoundland and Labrador, Canada
E. Everett — Georgia
C. Fulton — Alaska
J. M. Given, Jr. — North Carolina
M. Graham — Oregon
R. J. Handy — Kentucky
J. B. Harlan — Delaware
E. G. Hilton — Virginia
K. Hynes — Prince Edward Island, Canada
D. T. Jagger — Ohio
D. J. Jenkins — Kansas
A. P. Jones — Texas
E. S. Kawa, Jr. — Massachusetts
M. R. Klosterman — Iowa
M. Koth — Quebec, Canada
K. J. Kraft — Maryland
B. Krasnian — Saskatchewan, Canada
K. T. Lau — Alberta, Canada
G. Lemay — Ontario, Canada
W. McGivney — New York
T. J. Monroe — Oklahoma
G. R. Myrick — Arkansas
S. V. Nelson — Colorado
W. R. Owens — Louisiana
R. P. Pate — Alabama
R. L. Perry — Nevada
H. D. Pfaff — South Dakota
A. E. Platt — Connecticut
J. F. Porcella — West Virginia
M. R. Poulin — Idaho
D. C. Price — Yukon
Territory, Canada
R. S. Pucek — Wisconsin
T. W. Rieger — Manitoba, Canada
A. E. Rogers — Tennessee
D. E. Ross — New Brunswick, Canada
K. A. Rudolph — Hawaii
M. J. Ryan — Illinois
G. Scribner — Missouri
J. G. Siggers — British Columbia, Canada
A. E. Rogers — Tennessee
D. E. Ross — New Brunswick, Canada
K. A. Rudolph — Hawaii
M. J. Ryan — Illinois
G. Scribner — Missouri
J. G. Siggers — British Columbia, Canada
T. Stewart — Montana
R. K. Sturm — Utah
M. J. Verhagen — Wisconsin
P. L. Vescio, Jr. — New York
K. L. Watson — Mississippi
L. Williamson — Washington
D. J. Willis — Indiana

Copyright © 2010 by the American Society of Mechanical Engineers.
No reproduction may be made of this material without written consent of ASME.
Subgroup on Design (BPV III)

R. P. Deubler, Chair
R. S. Hill III, Vice Chair
A. N. Nguyen, Secretary
T. M. Adams
S. Asada
M. N. Bressler
C. W. Bruny
J. R. Cole
R. E. Comman, Jr.
A. A. Demenjian
P. Hirschberg
R. I. Jetter
R. B. Keating
J. F. Kiehl
H. Kobayashi
D. F. Landers
K. A. Manoly
A. N. Nguyen, Secretary
R. J. Masterson
J. C. Minichiello
M. Morishita
E. L. Pleins
I. Saito
G. C. Slagis
J. D. Stevenson
J. P. Tucker
K. R. Wichman
J. Yang
T. Ius, Delegate

Working Group on Piping (SG-D) (BPV III)

P. Hirschberg, Chair
G. Z. Tokarski, Secretary
T. M. Adams
G. A. Antaki
C. Basavaraju
J. Catalano
J. R. Cole
M. A. Gray
R. W. Haunt
J. Kawahata
R. B. Keating
V. Kostarev
Y. Liu
J. F. McCabe
J. C. Minichiello
E. R. Nelson
A. N. Nguyen
N. J. Shah
M. S. Sills
G. C. Slogis
N. C. Sutherland
E. A. Waiss
C.-I. Wu
D. F. Landers, Corresponding Member
R. D. Patel, Contributing Member
E. C. Rodlabaugh, Contributing Member

Working Group on Supports (SG-D) (BPV III)

R. J. Masterson, Chair
A. N. Nguyen
F. J. Birch, Secretary
I. Saito
K. Avrithi
J. R. Stinson
U. S. Bandyopadhyay
T. G. Terryah
R. P. Deubler
G. Z. Tokarski
W. P. Golini
C.-I. Wu

Working Group on Core Support Structures (SG-D) (BPV III)

J. Yang, Chair
H. S. Mehta
J. F. Kiehl, Secretary
J. F. Mullooly
F. G. Al-Chammas
A. Tsirigotis
J. T. Land

Working Group on Design Methodology (SG-D) (BPV III)

R. B. Keating, Chair
J. D. Stevenson
S. D. Snow, Secretary
A. Tsirigotis
K. Avrithi
T. M. Wiger
M. Basol
J. Yang
D. L. Caldwell
D. F. Landers, Corresponding Member
H. T. Harrison III
M. K. Au-Yang, Contributing Member
P. Hirschberg
H. Kobayashi
R. D. Blevins, Contributing Member
J. F. McCabe
W. S. Lapay, Contributing Member
A. N. Nguyen
A. Tsirigotis
D. H. Roarty
C. Jerz
E. A. Rodriguez

Working Group on Design of Division 3 Containments (SG-D) (BPV III)

E. L. Pleins, Chair
H. P. Shrivastava
D. J. Ammerman
C. J. Ternus
G. Bjorkman
I. D. Mclnnes, Contributing Member
S. Horowitz
D. W. Lewis
R. E. Nickell, Contributing Member
J. C. Minichiello
J. C. Minichiello
D. K. Morton

Working Group on Valves (SG-D) (BPV III)

J. P. Tucker, Chair
J. O’Callaghan
G. A. Jolly
J. D. Page
W. N. McLean
S. N. Shields
T. A. McMahon
H. R. Sonderegger
A. M. Mather
A. M. Mather
C. A. Mizer
J. C. Minichiello

Working Group on Vessels (SG-D) (BPV III)

G. K. Miller, Secretary
O.-S. Kim
C. Basavaraju
K. Matsunaga
C. W. Bruny
D. E. Matthews
J. V. Gregg
C. Turlyo
W. J. Heilker
W. F. Weitzte
A. Kalnins
R. M. Wilson
R. B. Keating

Special Working Group on Environmental Effects (SG-D) (BPV III)

W. Z. Novak, Chair
R. S. Hill III
C. L. Hoffmann
Y. H. Choi, Delegate

Copyright © 2010 by the American Society of Mechanical Engineers. No reproduction may be made of this material without written consent of ASME.
Subgroup on General Requirements (BPV III & 3C)

W. C. LaRochelle, Chair
L. M. Plante, Secretary
A. Appleton
J. R. Berry
J. V. Gardiner
W. P. Golini
G. L. Hollinger
E. A. Mayhew
R. P. McIntyre
M. R. Minick
B. Scott
C. T. Smith
W. K. Sowder, Jr.
D. M. Vickery
C. S. Withers
H. Michael, Delegate

Subgroup on Materials, Fabrication, and Examination (BPV III)

C. L. Hoffmann, Chair
W. G. Beach
W. H. Borter
G. R. Cannell
R. H. Davis
D. M. Doyle
G. M. Foster
B. D. Frew
G. B. Georgiev
S. E. Gingrich
R. M. Jessee
C. C. Kim
M. Lau
H. Murakami
N. M. Simpson
W. J. Sperko
J. R. Stinson
J. F. Strunk
K. B. Stuckey
A. D. Watkins
H. Michael, Delegate

Subgroup on Strategy and Management (BPV III, Divisions 1 and 2)

R. W. Barnes, Chair
C. A. Sanna, Staff Secretary
B. K. Bobo
N. Broom
J. R. Cole
B. A. Erler
C. M. Faidy
J. M. Helmey
M. F. Hessheimer
R. S. Hill III
E. V. Imbro
R. M. Jessee
M. Lau
D. K. Morton
J. Ramirez
R. F. Reedy
C. T. Smith
W. K. Sowder, Jr.
Y. Urabe

Special Working Group on Editing and Review (BPV III)

R. F. Reedy, Chair
M. N. Bressler
R. P. Deubler
B. A. Erler
W. C. LaRochelle
J. D. Stevenson

Special Working Group on Polyethylene Pipe (BPV III)

J. C. Minichiello, Chair
T. M. Adams
W. I. Adams
G. A. Antaki
C. Basavaraju
D. Burwell
J. M. Craig
R. R. Croft
E. L. Farrow
E. M. Focht
M. Golliet
A. N. Haddad
R. S. Hill III

Subgroup on Duties and Responsibilities (SG-GR) (BPV III)

J. V. Gardiner, Chair
G. L. Hollinger, Secretary
J. R. Berry
M. E. Jennings
K. A. Kavanagh
C. T. Smith, Chair
A. T. Keim
M. A. Lockwood
D. J. Roszman
S. Scardigno

Subgroup on Quality Assurance, Certification, and Stamping (SG-GR) (BPV III)

C. T. Smith, Chair
C. S. Withers, Secretary
A. Appleton
B. K. Bobo
S. M. Goodwin
J. W. Highlnds
R. P. McIntyre
M. R. Minick
R. B. Patel
S. J. Salvador
W. K. Sowder, Jr.
M. F. Sullivan
G. E. Szabatura
D. M. Vickery

Subgroup on Pressure Relief (BPV III)

J. F. Ball, Chair
E. M. Petrosky
A. L. Szeglin
D. G. Thibault

Subgroup on Industry Experience for New Plants (BPV III & BPV XI)

G. M. Foster, Chair
J. T. Lindberg, Chair
C. A. Sanna, Staff Secretary
H. L. Gustin, Secretary
M. L. Coats
A. A. Demenjian
H. Lungren
J. Fletcher
E. B. Gerlach
H. L. Gustin
D. O. Henry
E. V. Imbro
C. C. Kim
O.-S. Kim
K. Matsunaga
R. E. McLaughlin
A. McNeil III
M. N. Mitchell
H. Murakami
R. D. Patel
J. C. Poehler
D. W. Sandusky
R. R. Schaefer
D. M. Swann
E. R. Willis
C. S. Withers
S. M. Yee

Copyright © 2010 by the American Society of Mechanical Engineers. No reproduction may be made of this material without written consent of ASME.
Subgroup on Magnetic Confinement Fusion Energy Devices (BPV III)

- W. K. Sowder, Jr., Chair
- R. W. Barnes
- M. Higuchi
- K. H. Jong
- K. A. Kavanagh
- H.-J. Kim
- S. Lee
- G. Li
- X. Li
- D. Roszman
- S. J. Salvador

Subgroup on Nuclear High-Temperature Reactors (BPV III)

- M. Morishita, Chair
- G. H. Koo
- R. I. Jetter, Vice Chair
- D. K. Morton
- T.-L. Sham, Secretary
- J. E. Nestell
- N. Broom

Subgroup on Fatigue Strength (BPV III)

- W. J. O’Donnell, Chair
- S. A. Adams
- G. S. Chakrabarti
- T. M. Damiani
- P. R. Donavin
- R. J. Gurdal
- C. F. Heberling II
- C. E. Hinnant
- P. Hirschberg
- D. P. Jones
- G. Kharshafjian
- S. Majumdar
- S. N. Malik
- D. H. Roarty
- G. Taxacher
- A. Tsirigotis
- K. Wright
- H. H. Ziada

Subgroup on Fusion Energy Devices (BPV III)

- W. K. Sowder, Jr., Chair

Subgroup on Liquid Metal Reactors (BPV III)

- T.-L. Sham, Chair
- G. H. Koo
- R. W. Barnes
- C. M. Faidy
- R. I. Jetter
- M. Li
- S. Majumdar
- J. E. Nestell

JOINT ACI-ASME COMMITTEE ON CONCRETE COMPONENTS FOR NUCLEAR SERVICE (BPV 3C)

- A. C. Eberhardt, Chair
- O. Jovall
- C. T. Smith, Vice Chair
- N.-H. Lee
- M. L. Vazquez, Staff Secretary
- J. Munshi
- N. Alchaar
- G. H. Koo
- T.-L. Sham
- A. C. Eberhardt
- O. Jovall
- C. T. Smith

Subgroup on Design Analysis (BPV III)

- G. L. Hollinger, Chair
- W. J. Koves
- S. A. Adams
- K. Matsunaga
- M. R. Breach
- G. A. Miller
- R. G. Brown
- W. D. Reinhardt
- T. M. Damiani
- D. H. Roarty
- R. J. Gurdal
- G. Sannazzaro
- B. F. Hantz
- T. G. Seipp
- C. E. Hinnant
- W. F. Weitze
- D. P. Jones
- R. A. Whipple
- A. Kalnins
- W. J. O’Donnell
- G. Kharshafjian
- S. Majumdar
- S. N. Malik
- D. H. Roarty
- G. Taxacher
- A. Tsirigotis
- K. Wright
- H. H. Ziada

Special Working Group on Bolted Flanged Joints (BPV III)

- R. W. Mikitka, Chair
- G. D. Bibel
- W. Brown
- W. J. Koves
- M. S. Shelton

Working Group on Fusion Energy Devices (BPV III)

- W. K. Sowder, Jr., Chair

Working Group on Liquid Metal Reactors (BPV III)

- T.-L. Sham, Chair
- G. H. Koo
- R. W. Barnes
- C. M. Faidy
- R. I. Jetter
- M. Li
- S. Majumdar
- J. E. Nestell

Working Group on Materials, Fabrication, and Examination (BPV 3C)

- J. F. Artuso, Chair
- P. S. Ghosal, Vice Chair
- M. L. Williams, Secretary
- A. C. Eberhardt

Working Group on Modernization (BPV 3C)

- N. Alchaar, Chair
- J. F. Artuso
- O. Jovall, Vice Chair
- J. K. Harrold
- C. T. Smith, Secretary

COMMITTEE ON HEATING BOILERS (IV)

- P. A. Molvie, Chair
- T. L. Bedeaux, Vice Chair
- G. Moino, Staff Secretary
- J. Calland
- J. P. Chicoine
- C. M. Dove
- B. G. French
- W. L. Haag, Jr.
- J. A. Hall
- A. Heino

Subgroup on Elevated Temperature Design (BPV III)

- R. I. Jetter, Chair
- J. J. Abou-Hanna
- T. Asayama
- C. Becht
- F. W. Brust
- P. Carter
- J. F. Cervenka
- B. Dogan
- D. S. Griffin
- B. F. Hantz
- A. B. Hull
- M. H. Jawad
- G. H. Koo
- W. J. Kooves
- D. L. Marriott
- T. E. McGreevy
- J. E. Nestell
- W. J. O’Donnell
- T.-L. Sham
- R. W. Swindeman
- M. A. Hull
- M. H. Jawad
- G. H. Koo
- W. J. Kooves
- D. L. Marriott
- T. E. McGreevy
- J. E. Nestell
- W. J. O’Donnell
- T.-L. Sham
- R. W. Swindeman

Subgroup on Care and Operation of Heating Boilers (BPV IV)

- K. M. McTague
- P. A. Molvie

Copyright © 2010 by the American Society of Mechanical Engineers. No reproduction may be made of this material without written consent of ASME.
Subgroup on Cast Iron Boilers (BPV IV)
K. M. McTague, Chair
T. L. Bedeaux, Vice Chair
J. P. Chicoine
B. G. French
J. A. Hall
A. P. Jones

Subgroup on Materials (BPV IV)
P. A. Larkin, Chair
J. A. Hall, Vice Chair
A. Heino
B. G. French
J. Kliess
E. A. Nordstrom

Subgroup on Water Heaters (BPV IV)
W. L. Haag, Jr., Chair
J. Calland, Vice Chair
C. M. Dove
B. G. French
A. P. Jones
K. M. McTague

Subgroup on Welded Boilers (BPV IV)
T. L. Bedeaux, Chair
J. Calland, Vice Chair
C. M. Dove
B. G. French
A. P. Jones
E. A. Nordstrom

Subgroup on Surface Examination Methods (BPV V)
A. S. Birks, Chair
S. J. Akrin
P. L. Brown
B. Caccamise
N. Y. Faransso
N. Farrenbaugh
N. A. Finney
A. S. Birks
S. J. Akrin
J. E. Aycock
J. E. Batey
J. E. Batey
S. J. Akrin
J. E. Aycock
J. E. Batey
J. E. Batey
S. J. Akrin
J. E. Aycock
J. E. Batey
J. E. Batey
G. W. Hembree
R. W. Kruzic
C. A. Nove
F. J. Sattler
F. C. Turnbull
G. M. Gatti, Delegate

Subgroup on Volumetric Methods (BPV V)
G. W. Hembree, Chair
S. J. Akrin
J. E. Aycock
J. E. Batey
P. L. Brown
B. Caccamise
N. Y. Faransso
A. F. Garbolevsky
R. W. Hardy
R. A. Kellerhall
F. B. Kovacs
R. W. Kruzic
J. R. McGimpsey
M. D. Moles
A. B. Nagel
C. A. Nove
T. L. Plasek
F. C. Turnbull
D. E. Williams

Working Group on Acoustic Emissions (SG-VM) (BPV V)
N. Y. Faransso, Chair
J. E. Batey
R. K. Miller
F. B. Kovacs
G. W. Hembree
R. W. Kruzic
J. R. McGimpsey
R. J. Mills
A. B. Nagel
C. A. Nove
T. L. Plasek
F. C. Turnbull
D. E. Williams

Working Group on Radiography (SG-VM) (BPV V)
F. B. Kovacs, Chair
J. E. Aycock
J. E. Batey
P. L. Brown
B. Caccamise
N. Y. Faransso
A. F. Garbolevsky
R. W. Hardy
R. A. Kellerhall
M. D. Moles
A. B. Nagel
C. A. Nove
T. L. Plasek
F. C. Turnbull
D. E. Williams

Working Group on Ultrasonics (SG-VM) (BPV V)
R. W. Kruzic, Chair
J. E. Aycock
B. Caccamise
N. Y. Faransso
A. F. Garbolevsky
R. W. Hardy
N. A. Finney
O. F. Hedden
R. A. Kellerhall
M. D. Moles
A. B. Nagel
C. A. Nove
T. L. Plasek
F. C. Turnbull
D. E. Williams

COMMITTEE ON
NONDESTRUCTIVE EXAMINATION (V)
J. E. Batey, Chair
F. B. Kovacs, Vice Chair
J. Bruszewicz, Staff
Secretary
S. J. Akrin
C. A. Anderson
J. E. Aycock
A. S. Birks
P. L. Brown
N. Y. Faransso
A. F. Garbolevsky
G. W. Hembree
R. W. Kruzic
J. R. McGimpsey
R. W. Kruycz
J. E. Batey
F. B. Kovacs
G. W. Hembree
R. W. Kruzic
J. R. McGimpsey
R. J. Mills
A. B. Nagel
C. A. Nove
T. L. Plasek
F. C. Turnbull
D. E. Williams

COMMITTEE ON PRESSURE VESSELS (VIII)
T. P. Pastor, Chair
U. R. Miller, Vice Chair
S. J. Rossi, Staff Secretary
T. Schellens, Staff Secretary
R. J. Basile
J. Cameron
D. B. DeMichael
J. P. Glaspie
M. Gold
J. F. Grubb
L. E. Hayden, Jr.
G. G. Karcher
K. T. Lau
J. S. Lee
R. Mahadeen
S. Malone
R. W. Mikita
K. Mokhtarian
N. Y. Faransso
A. B. Nagel
J. R. McGimpsey
R. W. Kruzic
J. E. Aycock
B. Caccamise
N. Y. Faransso
A. F. Garbolevsky
R. W. Hardy
N. A. Finney
O. F. Hedden
D. T. Peters
M. J. Pischke
M. D. Moles
G. B. Rawls, Jr.
S. C. Roberts
C. D. Rodery
A. Selz
J. R. Sims, Jr.
D. A. Swanson
K. K. Tam
S. Terada
E. Upitis
P. A. McGowan, Delegate
H. Michael, Delegate
K. Oyamada, Delegate
M. E. Papponetti, Delegate
D. Rui, Delegate
T. Tabara, Delegate
W. S. Jacobs, Contributing

Subgroup on General Requirements/
Personnel Qualifications and Inquiries (BPV V)
F. B. Kovacs, Chair
C. A. Anderson
J. E. Batey
A. S. Birks
N. Y. Faransso
G. W. Hembree
J. W. Huf
J. R. Mackay
J. P. Swezy, Jr.
D. A. Osage

Subgroup on Surface Examination Methods (BPV V)
A. S. Birks, Chair
G. W. Hembree
R. W. Kruzic
C. A. Nove
F. J. Sattler
F. C. Turnbull
G. M. Gatti, Delegate

Subgroup on Volumetric Methods (BPV V)
G. W. Hembree, Chair
F. B. Kovacs
S. J. Akrin
R. W. Kruzic
J. R. McGimpsey
J. E. Batey
M. D. Moles
P. L. Brown
A. B. Nagel
B. Caccamise
C. A. Nove
T. L. Plasek
A. F. Garbolevsky
F. J. Sattler
R. W. Hardy
G. M. Gatti, Delegate
R. A. Kellerhall
J. E. Batey
R. K. Miller
F. B. Kovacs
G. W. Hembree
R. W. Kruzic
J. R. McGimpsey
R. J. Mills
A. B. Nagel
C. A. Nove
T. L. Plasek
F. C. Turnbull
D. E. Williams

Working Group on Acoustic Emissions (SG-VM) (BPV V)
N. Y. Faransso, Chair
J. E. Batey
R. K. Miller
F. B. Kovacs
G. W. Hembree
R. W. Kruzic
J. R. McGimpsey
R. J. Mills
A. B. Nagel
C. A. Nove
T. L. Plasek
F. C. Turnbull
D. E. Williams

Working Group on Radiography (SG-VM) (BPV V)
F. B. Kovacs, Chair
J. E. Aycock
J. E. Batey
P. L. Brown
B. Caccamise
N. Y. Faransso
A. F. Garbolevsky
R. W. Hardy
R. A. Kellerhall
M. D. Moles
A. B. Nagel
C. A. Nove
T. L. Plasek
F. C. Turnbull
D. E. Williams

Working Group on Ultrasonics (SG-VM) (BPV V)
R. W. Kruzic, Chair
J. E. Aycock
B. Caccamise
N. Y. Faransso
A. F. Garbolevsky
R. W. Hardy
N. A. Finney
O. F. Hedden
R. A. Kellerhall
M. D. Moles
A. B. Nagel
C. A. Nove
T. L. Plasek
F. C. Turnbull
D. E. Williams

COMMITTEE ON PRESSURE VESSELS (VIII)
T. P. Pastor, Chair
U. R. Miller, Vice Chair
S. J. Rossi, Staff Secretary
T. Schellens, Staff Secretary
R. J. Basile
J. Cameron
D. B. DeMichael
J. P. Glaspie
M. Gold
J. F. Grubb
L. E. Hayden, Jr.
G. G. Karcher
K. T. Lau
J. S. Lee
R. Mahadeen
S. Malone
R. W. Mikita
K. Mokhtarian
N. Y. Faransso
A. B. Nagel
J. R. McGimpsey
R. W. Kruzic
J. E. Aycock
B. Caccamise
N. Y. Faransso
A. F. Garbolevsky
R. W. Hardy
N. A. Finney
O. F. Hedden
D. T. Peters
M. J. Pischke
M. D. Moles
G. B. Rawls, Jr.
S. C. Roberts
C. D. Rodery
A. Selz
J. R. Sims, Jr.
D. A. Swanson
K. K. Tam
S. Terada
E. Upitis
P. A. McGowan, Delegate
H. Michael, Delegate
K. Oyamada, Delegate
M. E. Papponetti, Delegate
D. Rui, Delegate
T. Tabara, Delegate
W. S. Jacobs, Contributing

Copyright © 2010 by the American Society of Mechanical Engineers.
No reproduction may be made of this material without written consent of ASME.
Subgroup on Design (BPV VIII)

U. R. Miller, Chair
R. J. Basile, Vice Chair
M. D. Lower, Secretary
O. A. Barsky
M. R. Breach
F. L. Brown
J. R. Farr
C. E. Hinnant
M. H. Jawad
R. W. Miktitka
K. Mokhtarian
D. A. Osage
T. P. Pastor
M. D. Rana
G. B. Rawls, Jr.
S. C. Roberts

C. D. Rodery
A. Selz
S. C. Shah
J. C. Sowinski
C. H. Sturgeon
D. A. Swanson
K. K. Tam
J. Vattappilly
R. A. Whipple
A. H. Gibbs, Delegate
K. Oyamada, Delegate
M. E. Papponetti, Delegate
W. S. Jacobs, Corresponding Member
E. L. Thomas, Jr., Honorary Member

Subgroup on Fabrication and Inspection (BPV VIII)

C. D. Rodery, Chair
J. P. Swezy, Jr., Vice Chair
B. R. Morelock, Secretary
J. L. Arnold
W. J. Bees
L. F. Campbell
H. E. Gordon
W. S. Jacobs
D. J. Kreft

J. S. Lee
D. A. Osage
M. J. Pischke
M. J. Rice
B. F. Shelley
P. L. Sturgill
T. Tahara
K. Oyamada, Delegate
R. Uebel, Delegate

Subgroup on General Requirements (BPV VIII)

S. C. Roberts, Chair
D. B. DeMichael, Vice Chair
F. L. Richter, Secretary
R. J. Basile
D. T. Davis
J. P. Glaspie
L. E. Hayden, Jr.
K. T. Lau
M. D. Lower

C. C. Neely
A. S. Olivesares
D. B. Stewart
D. A. Swanson
K. K. Tam
A. H. Gibbs, Delegate
K. Oyamada, Delegate
R. Uebel, Delegate

Subgroup on Heat Transfer Equipment (BPV VIII)

R. Mahadeen, Chair
T. W. Norton, Vice Chair
G. Aurioles
S. R. Babka
J. H. Barbee
O. A. Barsky
I. G. Campbell
A. Chaudouet
M. D. Clark
J. I. Gordon
M. J. Holtz
F. E. Jehrie
G. G. Karcher

D. L. Kurle
B. J. Lerch
S. Mayeux
U. R. Miller
R. J. Stastry
K. Oyamada, Delegate
F. Osweller, Corresponding Member
S. Yokell, Corresponding Member
S. M. Caldwell, Honorary Member

Subgroup on High-Pressure Vessels (BPV VIII)

D. T. Peters, Chair
A. P. Maslowski, Staff Secretary
L. P. Antalfy
R. C. Biel
P. N. Chaku
R. Cordes
R. D. Dixon
D. M. Fryer
R. T. Hallman
A. H. Honza
M. M. James
P. Jansson
J. A. Kapp
J. Kelljens
D. P. Kendall
A. K. Khare

S. C. Mordre
E. A. Rodriguez
E. D. Roll
J. R. Sims, Jr.
D. L. Stang
F. W. Tatar
S. Terada
R. Wink
K. Oyamada, Delegate
L. Fridlund, Corresponding Member
M. D. Mann, Contributing Member
G. J. Mraz, Contributing Member
D. J. Burns, Honorary Member

Subgroup on Materials (BPV VIII)

J. F. Grubb, Chair
J. Cameron, Vice Chair
P. G. Wittenbach, Secretary
A. Di Rienzo
M. Gold
M. Katcher
W. M. Lundy
D. W. Rahoi
R. C. Sutherlin
E. Upitis

K. Oyamada, Delegate
E. E. Morgenegg, Corresponding Member
E. G. Nisbett, Corresponding Member
G. S. Dixit, Contributing Member
J. A. McMaster, Contributing Member

Subgroup on Toughness (BPV II & BPV VIII)

D. A. Swanson, Chair
C. C. Neely
J. L. Arnold
M. D. Lower
R. J. Basile
F. L. Richter
W. S. Jacobs
K. Mokhtarian
K. Oyamada, Delegate

S. Malone, Chair
R. W. Dickerson
E. Soltow, Vice Chair
B. Lukasch
T. F. Bonn
M. R. Minick
F. L. Brown
A. A. Stupica
A. H. Honza
J. Vattappilly

Special Working Group on Graphite Pressure Equipment (BPV VIII)

S. Malone, Chair
R. W. Dickerson
E. Soltow, Vice Chair
B. Lukasch
T. F. Bonn
M. R. Minick
F. L. Brown
A. A. Stupica

Task Group on Impulsively Loaded Vessels (BPV VIII)

R. E. Nickell, Chair
G. A. Antaki
J. K. Ashahina
D. D. Barker
R. C. Biel
D. W. Bowman
A. M. Clayton
J. E. Didlake, Jr.
T. A. Duffey
B. L. Haroldsen
H. L. Heaton

D. Hilding
K. W. King
R. Kitamura
R. A. Leishear
P. Leslie
F. Ohlson
D. T. Peters
E. A. Rodriguez
C. Romero
J. E. Shepherd

Copyright © 2010 by the American Society of Mechanical Engineers. No reproduction may be made of this material without written consent of ASME.
Working Group on Flaw Evaluation (SG-ES) (BPV XI)

R. C. Cipolla, Chair
G. H. DeBoo, Secretary
W. H. Bamford, Jr.
M. Basol
B. Bezensek
J. M. Bloom
H.-D. Chung
B. R. Ganta
R. G. Gilada
T. J. Griesbach
H. L. Gustin
F. D. Hayes
P. H. Hoang
K. Hojo
D. N. Hopkins
K. Koyama
D. R. Lee

H. S. Mehta
J. G. Merkle
K. Miyazaki
R. K. Qashu
S. Ranganath
D. L. Rudland
P. J. Rush
D. A. Scarth
W. L. Server
T. V. Vo
K. R. Wichman
G. M. Wilkowski
S. X. Xu
K. K. Yoon
V. A. Zilberstein

Working Group on Operating Plant Criteria (SG-ES) (BPV XI)

T. J. Griesbach, Chair
W. H. Bamford, Jr.
H. Behnke
B. A. Bishop
T. L. Dickson
R. L. Dyle
S. R. Gosselin
M. Hayashi
H. S. Mehta

M. A. Mitchell
R. Pace
S. Ranganath
W. L. Server
E. A. Siegel
D. V. Sommerville
G. L. Stevens
D. P. Weakland
K. K. Yoon

Working Group on Pipe Flaw Evaluation (SG-ES) (BPV XI)

D. A. Scarth, Chair
G. M. Wilkowski, Secretary
T. A. Bacon
W. H. Bamford, Jr.
B. Bezensek
H.-D. Chung
R. C. Cipolla
N. G. Cofie
J. M. Davis
G. H. DeBoo
B. Dogan
B. R. Ganta
L. F. Goyette
K. Hasegawa
P. H. Hoang

K. Hojo
D. N. Hopkins
K. Kashima
R. O. McGill
H. S. Mehta
K. Miyazaki
D. L. Rudland
P. J. Rush
B. S. Wasiluk
K. K. Yoon
V. A. Zilberstein

Working Group on Personnel Qualification and Surface Visual and Eddy Current Examination (SG-NDE) (BPV XI)

A. S. Reed, Chair
D. R. Cordes, Secretary
C. A. Anderson
B. L. Curtis
N. Farenbaugh
D. O. Henry
K. M. Hoffman

J. W. Houf
J. T. Lindberg
D. R. Quattlebaum, Jr.
D. Spake
J. C. Spanner, Jr.
M. C. Weatherly
C. J. Wirtz

Working Group on Procedure Qualification and Volumetric Examination (SG-NDE) (BPV XI)

M. E. Gothard, Chair
G. R. Perkins, Secretary
M. T. Anderson
C. B. Cheezem
A. D. Chockie
S. R. Doctor
F. E. Dohmen
K. J. Hacker

R. A. Kellerhall
D. Kurek
G. A. Lothhus
C. E. Moyer
S. A. Sabo
R. V. Swain
S. J. Todd

Subgroup on Repair/Replacement Activities (SG-RRA) (BPV XI)

R. A. Yonekawa, Chair
E. V. Farrell, Jr., Secretary
J. M. Gamber
E. B. Gerlach
R. E. Gimpel
D. R. Graham
R. A. Hermann

J. C. Keenan
R. D. Kerr
B. R. Newton
J. E. O'Sullivan
R. R. Stevenson
R. W. Swanye
D. E. Waskey
J. G. Weicks

Working Group on Welding and Special Repair Processes (SG-RRA) (BPV XI)

D. E. Waskey, Chair
M. Lau
D. J. Tilly, Secretary
S. L. McCracken
R. E. Cantrell
D. B. Meredith
S. J. Findlan
J. E. O'Sullivan
P. D. Fisher
M. L. Hall
G. R. Poling
R. A. Hermann
R. E. Smith
K. J. Karwoski
C. C. Kim
K. R. Willens

Subgroup on Nondestructive Examination (SG-NDE) (BPV XI)

J. C. Spanner, Jr., Chair
G. A. Lothhus, Secretary
C. A. Anderson
T. L. Chan
C. B. Cheezem
D. R. Cordes
F. E. Dohmen
M. E. Gothard

D. O. Henry
D. Kurek
G. L. Lagleder
J. T. Lindberg
G. R. Perkins
A. S. Reed
F. J. Schaaf, Jr.
C. J. Wirtz

Working Group on Design and Programs (SG-RRA) (BPV XI)

E. B. Gerlach, Chair
D. S. Brown, Secretary
O. Bhattay
J. W. Collins
R. R. Croft
G. G. Elder
E. V. Farrell, Jr.
S. K. Fisher
J. M. Gamber

D. R. Graham
G. F. Harttraft
T. E. Hiss
M. A. Pyne
R. R. Stevenson
R. W. Swanye
A. H. Tautique
T. P. Vassallo, Jr.
R. A. Yonekawa

Copyright © 2010 by the American Society of Mechanical Engineers.
No reproduction may be made of this material without written consent of ASME.
PERSONNEL

Officers of ASTM Committees

(Cooperating in the Development of the Specifications Herein)

As of February 11, 2010

<table>
<thead>
<tr>
<th>A1 COMMITTEE ON STEEL, STAINLESS STEEL, AND RELATED ALLOYS</th>
<th>A4 COMMITTEE ON IRON CASTINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. M. Cobb, Chair</td>
<td>W. H. Le Van, Chair</td>
</tr>
<tr>
<td>T. J. Mach, Producer Vice Chair</td>
<td>R. W. Bonds, Membership Secretary</td>
</tr>
<tr>
<td>K. E. Orie, Producer Vice Chair</td>
<td>W. C. Bliss, Vice Chair</td>
</tr>
<tr>
<td>J. Sasaki, Producer Vice Chair</td>
<td>G. L. Simmons, Secretary</td>
</tr>
<tr>
<td>E. R. Boes, User Vice Chair</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. McClung, Staff Manager</td>
</tr>
<tr>
<td></td>
<td>A. J. Harrold, User Vice Chair</td>
</tr>
<tr>
<td></td>
<td>F. R. Setlak, User Vice Chair</td>
</tr>
<tr>
<td></td>
<td>D. K. Panda, Secretary</td>
</tr>
<tr>
<td></td>
<td>M. A. Demerest, Membership Secretary</td>
</tr>
<tr>
<td></td>
<td>G. Luciw, Staff Manager</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The American Society of Mechanical Engineers (ASME) and the American Society for Testing and Materials (ASTM) have cooperated for more than fifty years in the preparation of material specifications adequate for safety in the field of pressure equipment for ferrous and nonferrous materials, contained in Section II (Part A — Ferrous and Part B — Nonferrous) of the ASME Boiler and Pressure Vessel Code.

The evolution of this cooperative effort is contained in Professor A. M. Greene’s “History of the ASME Boiler Code,” which was published as a series of articles in Mechanical Engineering from July 1952 through August 1953 and is now available from ASME in a special bound edition. The following quotations from this history, which was based upon the minutes of the ASME Boiler and Pressure Vessel Committee, will help focus on the cooperative nature of the specifications found in Section II, Material Specifications.

“General discussion of material specifications comprising Paragraphs 1 to 112 of Part 2 and the advisability of having them agree with ASTM specifications,” (1914).

“ASME Subcommittee appointed to confer with ASTM,” (1916).

“Because of this cooperation the specifications of the 1918 Edition of the ASME Boiler Code were more nearly in agreement with ASTM specifications. In the 1924 Edition of the Code, 10 specifications were in complete agreement with ASTM specifications, 4 in substantial agreement and 2 covered materials for which ASTM had no corresponding specifications.” (1925).

“In Section II, Material Specifications, the paragraphs were given new numbers beginning with S-1 and extending to S-213,” (1925).

“Section II was brought into agreement with changes made in the latest ASTM specifications since 1921,” (1932).

“The Subcommittee on Material Specifications arranged for the introduction of the revisions of many of the specifications so that they would agree with the latest form of the earlier ASTM specifications...” (1935).

From the preceding, it is evident that many of the material specifications were prepared by the Boiler and Pressure Vessel Code Committees, then subsequently, by cooperative action, modified and identified as ASTM specifications. Section II, Parts A and B, currently contain many material specifications which are identical with the corresponding ASTM specifications and some which have been modified for Code usage. Many of these specifications are published in dual format. That is, they contain both U.S. Customary units and SI units. The metrication protocols followed in the specifications are those adopted by ASTM, and are usually to the rules of IEEE/ASTM 10-1997 Standard for the Use of the International System of Units (SI): The Modern Metric System.

In 1969, the American Welding Society began publication of specifications for welding rods, electrodes, and filler metals, hitherto issued by ASTM. The Boiler and Pressure Vessel Committee has recognized this new arrangement, and is now working with AWS on these specifications. Section II, Part C, contains the welding material specifications approved for Code use.

In 1992, the ASME Board of Pressure Technology Codes and Standards endorsed the use of non-ASTM material for Boiler and Pressure Vessel Code applications. It is the intent to follow the procedures and practices currently in use to implement the adoption of non-ASTM materials. All identical specifications are indicated by the ASME/originating organization symbols. The specifications prepared and copyrighted by ASTM, AWS, and other originating organizations are reproduced in the Code with the permission of the respective Society. The ASME Boiler and Pressure Vessel Committee has given careful consideration to each new and revised specification, and has made such changes as they deemed necessary to make the specification adaptable for Code usage. In addition, ASME has furnished ASTM with the basic requirements that should govern many proposed new specifications. Joint action will continue an effort to make the ASTM, AWS, and ASME specifications identical.

To ensure that there will be a clear understanding on the part of the users of Section II, ASME publishes both the identical specifications and those amended for Code usage in three Parts every three years, in the same page size to match the other sections of the Code, and updates are issued to provide the latest changes in Section II specifications.

The ASME Boiler and Pressure Vessel Code has been adopted into law by 50 states and many municipalities in the United States and by all of the Canadian provinces.
SPECIFICATIONS LISTED BY MATERIALS

Steel Plate, Sheets and Strip

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-568/SA-568M</td>
<td>Steel, Sheet, Carbon Structural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, General Requirements for</td>
<td>1057</td>
</tr>
<tr>
<td>SA-749/SA-749M</td>
<td>Steel, Strip, Carbon and High-Strength, Low-Alloy, Hot-Rolled General Requirements for</td>
<td>1327</td>
</tr>
</tbody>
</table>

Steel Pipe

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-53/SA-53M</td>
<td>Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless</td>
<td>161</td>
</tr>
<tr>
<td>SA-106/SA-106M</td>
<td>Seamless Carbon Steel Pipe for High-Temperature Service</td>
<td>195</td>
</tr>
<tr>
<td>SA-134</td>
<td>Pipe, Steel, Electric-Fusion (Arc)-Welded (Sizes NPS 16 and Over)</td>
<td>207</td>
</tr>
<tr>
<td>SA-135</td>
<td>Electric-Resistance-Welded Steel Pipe</td>
<td>213</td>
</tr>
<tr>
<td>SA-312/SA-312M</td>
<td>Seamless and Welded Austenitic Stainless Steel Pipes</td>
<td>487</td>
</tr>
<tr>
<td>SA-333/SA-333M</td>
<td>Seamless and Welded Steel Pipe for Low-Temperature Service</td>
<td>519</td>
</tr>
<tr>
<td>SA-335/SA-335M</td>
<td>Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service</td>
<td>541</td>
</tr>
<tr>
<td>SA-358/SA-358M</td>
<td>Electric-Fusion-Welded Austenitic Chromium-Nickel Alloy Steel Pipe for High-Temperature Service</td>
<td>605</td>
</tr>
<tr>
<td>SA-369/SA-369M</td>
<td>Carbon and Ferritic Alloy Steel Forged and Bored Pipe for High-Temperature Service</td>
<td>615</td>
</tr>
<tr>
<td>SA-376/SA-376M</td>
<td>Seamless Austenitic Steel Pipe for High-Temperature Central-Station Service</td>
<td>685</td>
</tr>
<tr>
<td>SA-409/SA-409M</td>
<td>Welded Large Diameter Austenitic Steel Pipe for Corrosive or High-Temperature Service</td>
<td>735</td>
</tr>
<tr>
<td>SA-426/SA-426M</td>
<td>Centrifugally Cast Ferritic Alloy Steel Pipe for High-Temperature Service</td>
<td>765</td>
</tr>
<tr>
<td>SA-451/SA-451M</td>
<td>Centrifugally Cast Austenitic Steel Pipe for High-Temperature Service</td>
<td>805</td>
</tr>
<tr>
<td>SA-524</td>
<td>Seamless Carbon Steel Pipe for Atmospheric and Lower Temperatures</td>
<td>953</td>
</tr>
<tr>
<td>SA-530/SA-530M</td>
<td>General Requirements for Specialized Carbon and Alloy Steel Pipe</td>
<td>963</td>
</tr>
<tr>
<td>SA-587</td>
<td>Electric-Resistance-Welded Low-Carbon Steel Pipe for the Chemical Industry</td>
<td>1115</td>
</tr>
<tr>
<td>SA-660</td>
<td>Centrifugally Cast Carbon Steel Pipe for High-Temperature Service</td>
<td>1161</td>
</tr>
<tr>
<td>SA-671</td>
<td>Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures</td>
<td>1185</td>
</tr>
<tr>
<td>SA-672</td>
<td>Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures</td>
<td>1195</td>
</tr>
<tr>
<td>SA-691</td>
<td>Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures</td>
<td>1219</td>
</tr>
<tr>
<td>SA-727/SA-727M</td>
<td>Carbon Steel Forgings for Piping Components With Inherent Notch Toughness</td>
<td>1281</td>
</tr>
<tr>
<td>SA-731/SA-731M</td>
<td>Seamless, Welded Ferritic, and Martensitic Stainless Steel Pipe</td>
<td>1287</td>
</tr>
<tr>
<td>SA-790/SA-790M</td>
<td>Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe</td>
<td>1403</td>
</tr>
<tr>
<td>SA-813/SA-813M</td>
<td>Single- or Double-Welded Austenitic Stainless Steel Pipe</td>
<td>1427</td>
</tr>
<tr>
<td>SA-814/SA-814M</td>
<td>Cold-Worked Welded Austenitic Stainless Steel Pipe</td>
<td>1437</td>
</tr>
<tr>
<td>SA-941</td>
<td>Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys</td>
<td>1485</td>
</tr>
</tbody>
</table>
Steel Flanges, Fittings, Valves, and Parts

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-961/SA-961M</td>
<td>Common Requirements for Steel Flanges, Forged Fittings, Valves and Parts for Piping Applications</td>
</tr>
<tr>
<td>SA-999/SA-999M</td>
<td>General Requirements for Alloy and Stainless Steel Pipe</td>
</tr>
</tbody>
</table>

Steel Tubes

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-178/SA-178M</td>
<td>Electric-Resistance-Welded Carbon Steel and Carbon-Manganese Steel Boiler and Superheater Tubes</td>
</tr>
<tr>
<td>SA-179/SA-179M</td>
<td>Seamless Cold-Drawn Low-Carbon Steel Heat-Exchanger and Condenser Tubes</td>
</tr>
<tr>
<td>SA-192/SA-192M</td>
<td>Seamless Carbon Steel Boiler Tubes for High-Pressure Service</td>
</tr>
<tr>
<td>SA-209/SA-209M</td>
<td>Seamless Carbon-Molybdenum Alloy-Steel Boiler and Superheater Tubes</td>
</tr>
<tr>
<td>SA-210/SA-210M</td>
<td>Seamless Medium-Carbon Steel Boiler and Superheater Tubes</td>
</tr>
<tr>
<td>SA-213/SA-213M</td>
<td>Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes</td>
</tr>
<tr>
<td>SA-249/SA-249M</td>
<td>Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes</td>
</tr>
<tr>
<td>SA-250/SA-250M</td>
<td>Electric-Resistance-Welded Ferritic Alloy-Steel Boiler and Superheater Tubes</td>
</tr>
<tr>
<td>SA-268/SA-268M</td>
<td>Seamless and Welded Ferritic and Martensitic Stainless Steel Tubing for General Service</td>
</tr>
<tr>
<td>SA-334/SA-334M</td>
<td>Seamless and Welded Carbon and Alloy-Steel Tubes for Low-Temperature Service</td>
</tr>
<tr>
<td>SA-423/SA-423M</td>
<td>Seamless and Electric-Welded Low-Alloy Steel Tubes</td>
</tr>
<tr>
<td>SA-450/SA-450M</td>
<td>General Requirements for Carbon, Ferritic Alloy, and Austenitic Alloy Steel Tubes</td>
</tr>
<tr>
<td>SA-513</td>
<td>Electric-Resistance-Welded Carbon and Alloy Steel Mechanical Tubing</td>
</tr>
<tr>
<td>SA-556/SA-556M</td>
<td>Seamless Cold-Drawn Carbon Steel Feedwater Heater Tubes</td>
</tr>
<tr>
<td>SA-557/SA-557M</td>
<td>Electric-Resistance-Welded Carbon Steel Feedwater Heater Tubes</td>
</tr>
<tr>
<td>SA-688/SA-688M</td>
<td>Welded Austenitic Stainless Steel Feedwater Heater Tubes</td>
</tr>
<tr>
<td>SA-789/SA-789M</td>
<td>Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service</td>
</tr>
<tr>
<td>SA-803/SA-803M</td>
<td>Welded Ferritic Stainless Steel Feedwater Heater Tubes</td>
</tr>
<tr>
<td>SA-941</td>
<td>Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys</td>
</tr>
<tr>
<td>SA-1016/SA-1016M</td>
<td>General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes</td>
</tr>
</tbody>
</table>

Steel Flanges, Fittings, Valves, and Parts

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-105/SA-105M</td>
<td>Carbon Steel Forgings, for Piping Applications</td>
</tr>
<tr>
<td>SA-181/SA-181M</td>
<td>Carbon Steel Forgings, for General-Purpose Piping</td>
</tr>
<tr>
<td>SA-182/SA-182M</td>
<td>Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service</td>
</tr>
<tr>
<td>SA-216/SA-216M</td>
<td>Steel Castings, Carbon, Suitable for Fusion Welding for High-Temperature Service</td>
</tr>
<tr>
<td>SA-217/SA-217M</td>
<td>Steel Castings, Martensitic Stainless and Alloy, for Pressure-Containing Parts, Suitable for High-Temperature Service</td>
</tr>
<tr>
<td>SA-231/SA-231M</td>
<td>Chromium-Vanadium Alloy Steel Spring Wire</td>
</tr>
<tr>
<td>SA-232/SA-232M</td>
<td>Chromium-Vanadium Alloy Steel Valve Spring Quality Wire</td>
</tr>
<tr>
<td>SA-234/SA-234M</td>
<td>Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High-Temperature Service</td>
</tr>
</tbody>
</table>
SA-350/SA-350M Carbon and Low-Alloy Steel Forgings, Requiring Notch Toughness Testing for Piping Components ... 563
SA-351/SA-351M Castings, Austenitic, Austenitic-Ferritic (Duplex), for Pressure-Containing Parts .. 575
SA-352/SA-352M Steel Castings, Ferritic and Martensitic, for Pressure Containing Parts, Suitable for Low-Temperature Service .. 583
SA-403/SA-403M Wrought Austenitic Stainless Steel Piping Fittings .. 725
SA-420/SA-420M Piping Fittings of Wrought Carbon Steel and Alloy Steel for Low-Temperature Service ... 749
SA-522/SA-522M Forged or Rolled 8 and 9% Nickel Alloy Steel Flanges, Fittings, Valves, and Parts for Low-Temperature Service 947
SA-592/SA-592M High-Strength Quenched and Tempered Low-Alloy Steel Forged Fittings and Parts for Pressure Vessels ... 1123
SA-815/SA-815M Wrought Ferritic, Ferritic/Austenitic, and Martensitic Stainless Steel Piping Fittings .. 1445
SA-905 Steel Wire, Pressure Vessel Winding ... 1479
SA-960/SA-960M Common Requirements for Wrought Steel Piping Fittings .. 1493
SA-961/SA-961M Common Requirements for Steel Flanges, Forged Fittings, Valves and Parts for Piping Applications .. 1505
SA-985/SA-985M Steel Investment Castings General Requirements for Pressure-Containing Parts .. 1539
SA-995 Castings, Austenitic-Ferritic (Duplex) Stainless Steel, for Pressure-Containing Parts 1559

Steel Plates, Sheets, and Strip for Pressure Vessels
SA-20/SA-20M General Requirements for Steel Plates for Pressure Vessels 83
SA-203/SA-203M Pressure Vessel Plates, Alloy Steel, Nickel .. 297
SA-204/SA-204M Pressure Vessel Plates, Alloy Steel, Molybdenum ... 301
SA-225/SA-225M Pressure Vessel Plates, Alloy Steel, Manganese-Vanadium-Nickel 341
SA-240/SA-240M Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications 365
SA-263 Stainless Chromium Steel-Clad Plate ... 393
SA-264 Stainless Chromium-Nickel Steel-Clad Plate ... 401
SA-265 Nickel and Nickel-Base Alloy-Clad Steel Plate ... 409
SA-299/SA-299M Pressure Vessel Plates, Carbon Steel, Manganese-Silicon 465
SA-302/SA-302M Pressure Vessel Plates, Alloy Steel, Manganese-Molybdenum and Manganese-Molybdenum-Nickel .. 469
SA-353/SA-353M Pressure Vessel Plates, Alloy Steel, 9 Percent Nickel, Double-Normalized and Tempered ... 591
SA-387/SA-387M Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum 695
SA-414/SA-414M Steel, Sheet, Carbon, for Pressure Vessels ... 745
SA-455/SA-455M Pressure Vessel Plates, Carbon Steel, High-Strength Manganese 821
SA-480/SA-480M General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip ... 843
SA-515/SA-515M Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature Service ... 933
SA-516/SA-516M Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service .. 937
SA-517/SA-517M Pressure Vessel Plates, Alloy Steel, High Strength, Quenched and Tempered ... 943
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-533/SA-533M</td>
<td>Pressure Vessel Plates, Alloy Steel, Quenched and Tempered, Manganese-Molybdenum and Manganese-Molybdenum-Nickel</td>
</tr>
<tr>
<td>SA-537/SA-537M</td>
<td>Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel</td>
</tr>
<tr>
<td>SA-543/SA-543M</td>
<td>Pressure Vessel Plates, Alloy Steel, Quenched and Tempered, Nickel-Chromium-Molybdenum</td>
</tr>
<tr>
<td>SA-553/SA-553M</td>
<td>Pressure Vessel Plates, Alloy Steel, Quenched and Tempered, 8 and 9% Nickel</td>
</tr>
<tr>
<td>SA-562/SA-562M</td>
<td>Pressure Vessel Plates, Carbon Steel, Manganese-Titanium for Glass or Diffused Metallic Coatings</td>
</tr>
<tr>
<td>SA-612/SA-612M</td>
<td>Pressure Vessel Plates, Carbon Steel, High Strength, for Moderate and Lower Temperature Service</td>
</tr>
<tr>
<td>SA-645/SA-645M</td>
<td>Pressure Vessel Plates, 5% and 5 1/2% Nickel Alloy Steels, Specially Heat Treated</td>
</tr>
<tr>
<td>SA-662/SA-662M</td>
<td>Pressure Vessel Plates, Carbon-Manganese-Silicon Steel, for Moderate and Lower Temperature Service</td>
</tr>
<tr>
<td>SA-666</td>
<td>Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate and Flat Bar</td>
</tr>
<tr>
<td>SA-693</td>
<td>Precipitation-Hardening Stainless and Heat-Resisting Steel Plate, Sheet, and Strip</td>
</tr>
<tr>
<td>SA-724/SA-724M</td>
<td>Pressure Vessel Plates, Carbon-Manganese-Silicon Steel, Quenched and Tempered, for Welded Pressure Vessels</td>
</tr>
<tr>
<td>SA-736/SA-736M</td>
<td>Pressure Vessel Plates, Low-Carbon Age-Hardening Nickel-Copper-Chromium-Molybdenum-Columbium and Nickel-Copper-Manganese-Molybdenum-Columbium Alloy Steel</td>
</tr>
<tr>
<td>SA-737/SA-737M</td>
<td>Pressure Vessel Plates, High-Strength, Low-Alloy Steel</td>
</tr>
<tr>
<td>SA-738/SA-738M</td>
<td>Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel, for Moderate and Lower Temperature Service</td>
</tr>
<tr>
<td>SA-770/SA-770M</td>
<td>Through-Thickness Tension Testing of Steel Plates for Special Applications</td>
</tr>
<tr>
<td>SA-832/SA-832M</td>
<td>Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum-Vanadium</td>
</tr>
<tr>
<td>SA-841/SA-841M</td>
<td>Steel Plates for Pressure Vessels, Produced by the Thermo-Mechanical Control Process (TMCP)</td>
</tr>
<tr>
<td>SA-1010/SA-1010M</td>
<td>Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip</td>
</tr>
<tr>
<td>SA-1017/SA-1017M</td>
<td>Pressure Vessel Plates, Alloy-Steel, Chromium-Molybdenum-Tungsten</td>
</tr>
<tr>
<td>SA/AS 1548</td>
<td>Steel Plates for Pressure Equipment</td>
</tr>
<tr>
<td>SA/EN 10028-2</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 2: Non-Alloy and Alloy Steels With Specified Elevated Temperature Properties</td>
</tr>
<tr>
<td>SA/EN 10028-3</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 3: Weldable Fine Grain Steels, Normalized</td>
</tr>
<tr>
<td>SA/EN 10028-7</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 7: Stainless Steels</td>
</tr>
<tr>
<td>SA/GB 6654</td>
<td>Steel Plates for Pressure Vessels</td>
</tr>
<tr>
<td>SA/JIS G3118</td>
<td>Carbon Steel Plates for Pressure Vessels for Intermediate and Moderate Temperature Service</td>
</tr>
</tbody>
</table>

Structural Steel

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-6/SA-6M</td>
<td>General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling</td>
</tr>
<tr>
<td>SA-36/SA-36M</td>
<td>Carbon Structural Steel</td>
</tr>
<tr>
<td>SA-283/SA-283M</td>
<td>Low and Intermediate Tensile Strength Carbon Steel Plates</td>
</tr>
</tbody>
</table>
SA-572/SA-572M High-Strength Low-Alloy Columbium-Vanadium Structural Steel 1091
SA-656/SA-656M Hot-Rolled Structural Steel, High-Strength Low-Alloy Plate With
Improved Formability .. 1159
SA-1008/SA-1008M Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy
and High-Strength Low-Alloy With Improved Formability 1577
SA-1011/SA-1011M Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength
Low-Alloy, High-Strength Low-Alloy With Improved Formability,
and Ultra-High-Strength ... 1591
SA/CSA-G40.21 Structural Quality Steels ... 1637

Steel Bars
SA-6/SA-6M General Requirements for Rolled Structural Steel Bars, Plates, Shapes,
and Sheet Piling .. 1
SA-29/SA-29M Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements for ... 125
SA-31 Steel Rivets and Bars for Rivets, Pressure Vessels .. 143
SA-276 Stainless Steel Bars and Shapes .. 441
SA-311/SA-311M Cold-Drawn, Stress-Relieved Carbon Steel Bars Subject to Mechanical
Property Requirements .. 481
SA-479/SA-479M Stainless Steel Bars and Shapes for Use in Boilers and Other Pressure
Vessels .. 831
SA-484/SA-484M General Requirements for Stainless and Steel Bars, Billets, and
Forgings .. 871
SA-564/SA-564M Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and
Shapes .. 1047
SA-638/SA-638M Precipitation Hardening Iron Base Superalloy Bars, Forgings, and
Forging Stock for High-Temperature Service 1143
SA-675/SA-675M Steel Bars, Carbon, Hot-Wrought, Special Quality, Mechanical
Properties .. 1203
SA-695 Steel Bars, Carbon, Hot-Wrought, Special Quality, for Fluid Power
Applications .. 1235
SA-696 Steel Bars, Carbon, Hot-Wrought or Cold-Finished, Special Quality,
for Pressure Piping Components .. 1239
SA-739 Steel Bars, Alloy, Hot-Wrought, for Elevated Temperature or Pressure-
Containing Parts, or Both .. 1309
SA/JIS G4303 Stainless Steel Bars ... 1649

Steel Bolting Materials
SA-193/SA-193M Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature
or High Pressure Service and Other Special Purpose Applications 261
SA-194/SA-194M Carbon and Alloy Steel Nuts for Bolts for High Pressure or High
Temperature Service, or Both .. 277
SA-307 Carbon Steel Bolts and Studs, 60 000 psi Tensile Strength 473
SA-320/SA-320M Alloy Steel and Stainless Steel Bolting Materials for Low-Temperature
Service .. 499
SA-325 Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile
Strength .. 509
SA-354 Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally
Threaded Fasteners .. 597
SA-437/SA-437M Alloy-Steel Turbine-Type Bolting Material Specially Heat Treated for
High-Temperature Service .. 775
SA-449 Hex Cap Screws, Bolts and Studs, Steel, Heat Treated, 120/105/90 ksi
Minimum Tensile Strength, General Use .. 781
SA-453/SA-453M High-Temperature Bolting Materials With Expansion Coefficients
Comparable to Austenitic Steel ... 811

Copyright © 2010 by the American Society of Mechanical Engineers.
No reproduction may be made of this material without written consent of ASME.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-540/SA-540M</td>
<td>Alloy Steel Bolting Materials for Special Applications</td>
<td>985</td>
</tr>
<tr>
<td>SA-563</td>
<td>Carbon and Alloy Steel Nuts</td>
<td>1035</td>
</tr>
<tr>
<td>SA-574</td>
<td>Alloy Steel Socket-Head Cap Screws</td>
<td>1097</td>
</tr>
<tr>
<td>SA-962/SA-962M</td>
<td>Common Requirements for Steel Fasteners or Fastener Materials, or Both, Intended for Use at Any Temperature From Cryogenic to the Creep Range</td>
<td>1517</td>
</tr>
<tr>
<td>SF-568M</td>
<td>Carbon and Alloy Steel Externally Threaded Metric Fasteners</td>
<td>1623</td>
</tr>
</tbody>
</table>

Steel Billets and Forgings

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-105/SA-105M</td>
<td>Carbon Steel Forgings, for Piping Applications</td>
<td>189</td>
</tr>
<tr>
<td>SA-181/SA-181M</td>
<td>Carbon Steel Forgings, for General-Purpose Piping</td>
<td>233</td>
</tr>
<tr>
<td>SA-266/SA-266M</td>
<td>Carbon Steel Forgings for Pressure Vessel Components</td>
<td>417</td>
</tr>
<tr>
<td>SA-336/SA-336M</td>
<td>Alloy Steel Forgings for Pressure and High-Temperature Parts</td>
<td>555</td>
</tr>
<tr>
<td>SA-350/SA-350M</td>
<td>Carbon and Low-Alloy Steel Forgings, Requiring Notch Toughness Testing for Piping Components</td>
<td>563</td>
</tr>
<tr>
<td>SA-372/SA-372M</td>
<td>Carbon and Alloy Steel Forgings for Thin-Walled Pressure Vessels</td>
<td>679</td>
</tr>
<tr>
<td>SA-484/SA-484M</td>
<td>General Requirements for Stainless Steel Bars, Billets, and Forgings</td>
<td>871</td>
</tr>
<tr>
<td>SA-508/SA-508M</td>
<td>Quenched and Tempered Vacuum-Treated Carbon and Alloy Steel Forgings for Pressure Vessels</td>
<td>897</td>
</tr>
<tr>
<td>SA-541/SA-541M</td>
<td>Quenched and Tempered Carbon and Alloy Steel Forgings for Pressure Vessel Components</td>
<td>995</td>
</tr>
<tr>
<td>SA-638/SA-638M</td>
<td>Precipitation Hardening Iron Base Superalloy Bars, Forgings, and Forging Stock for High-Temperature Service</td>
<td>1143</td>
</tr>
<tr>
<td>SA-649/SA-649M</td>
<td>Forged Steel Rolls, Used for Corrugating Paper Machinery</td>
<td>1153</td>
</tr>
<tr>
<td>SA-705/SA-705M</td>
<td>Age-Hardening Stainless Steel Forgings</td>
<td>1263</td>
</tr>
<tr>
<td>SA-723/SA-723M</td>
<td>Alloy Steel Forgings for High-Strength Pressure Component Application</td>
<td>1271</td>
</tr>
<tr>
<td>SA-745/SA-745M</td>
<td>Ultrasonic Examination of Austenitic Steel Forgings</td>
<td>1313</td>
</tr>
<tr>
<td>SA-765/SA-765M</td>
<td>Carbon Steel and Low-Alloy Steel Pressure-Vessel-Component Forgings With Mandatory Toughness Requirements</td>
<td>1345</td>
</tr>
<tr>
<td>SA-788/SA-788M</td>
<td>Steel Forgings, General Requirements</td>
<td>1379</td>
</tr>
<tr>
<td>SA-836/SA-836M</td>
<td>Titanium-Stabilized Carbon Steel Forgings for Glass-Lined Piping and Pressure Vessel Service</td>
<td>1465</td>
</tr>
<tr>
<td>SA-965/SA-965M</td>
<td>Steel Forgings, Austenitic, for Pressure and High Temperature Parts</td>
<td>1531</td>
</tr>
</tbody>
</table>

Steel Castings

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-216/SA-216M</td>
<td>Steel Castings, Carbon, Suitable for Fusion Welding for High-Temperature Service</td>
<td>331</td>
</tr>
<tr>
<td>SA-217/SA-217M</td>
<td>Steel Castings, Martensitic Stainless and Alloy, for Pressure-Containing Parts, Suitable for High-Temperature Service</td>
<td>335</td>
</tr>
<tr>
<td>SA-351/SA-351M</td>
<td>Castings, Austenitic, Austenitic-Ferritic (Duplex), for Pressure-Containing Parts</td>
<td>575</td>
</tr>
<tr>
<td>SA-352/SA-352M</td>
<td>Steel Castings, Ferritic and Martensitic, for Pressure-Containing Parts, Suitable for Low Temperature Service</td>
<td>583</td>
</tr>
<tr>
<td>SA-487/SA-487M</td>
<td>Steel Castings Suitable for Pressure Service</td>
<td>887</td>
</tr>
<tr>
<td>SA-494/SA-494M</td>
<td>Castings, Nickel and Nickel Alloy</td>
<td>895</td>
</tr>
<tr>
<td>SA-609/SA-609M</td>
<td>Castings, Carbon, Low-Alloy, and Martensitic Stainless Steel, Ultrasonic Examination Thereof</td>
<td>1127</td>
</tr>
<tr>
<td>SA-667/SA-667M</td>
<td>Centrifugally Cast Dual Metal (Gray and White Cast Iron) Cylinders</td>
<td>1183</td>
</tr>
<tr>
<td>SA-703/SA-703M</td>
<td>Steel Castings, General Requirements, for Pressure-Containing Parts</td>
<td>1243</td>
</tr>
<tr>
<td>SA-747/SA-747M</td>
<td>Steel Castings, Stainless, Precipitation Hardening</td>
<td>1319</td>
</tr>
<tr>
<td>SA-781/SA-781M</td>
<td>Castings, Steel and Alloy, Common Requirements, for General Industrial Use</td>
<td>1361</td>
</tr>
</tbody>
</table>

Copyright © 2010 by the American Society of Mechanical Engineers. No reproduction may be made of this material without written consent of ASME.
SA-985/SA-985M Steel Investment Castings General Requirements, for Pressure-Containing Parts .. 1539
SA-995 Castings, Austenitic-Ferritic (Duplex) Stainless Steel, for Pressure-Containing Parts .. 1559

Corrosion-Resisting and Heat-Resisting Steels
SA-182/SA-182M Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service 237
SA-193/SA-193M Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature or High Pressure Service and Other Special Purpose Applications 261
SA-194/SA-194M Carbon and Alloy Steel Nuts for Bolts for High-Pressure or High-Temperature Service, or Both .. 277
SA-213/SA-213M Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat Exchanger Tubes ... 315
SA-216/SA-216M Steel Castings, Carbon, Suitable for Fusion Welding for High-Temperature Service .. 331
SA-217/SA-217M Steel Castings, Martensitic Stainless and Alloy, for Pressure-Containing Parts, Suitable for High-Temperature Service 335
SA-240/SA-240M Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications 365
SA-249/SA-249M Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes .. 377
SA-264 Stainless Chromium-Nickel Steel-Clad Plate .. 401
SA-265 Nickel and Nickel-Base Alloy-Clad Steel Plate 409
SA-268/SA-268M Seamless and Welded Ferritic and Martensitic Stainless Steel Tubing for General Service .. 423
SA-312/SA-312M Seamless and Welded Austenitic Stainless Steel Pipes 487
SA-320/SA-320M Alloy Steel and Stainless Steel Bolting Materials for Low-Temperature Service .. 499
SA-336/SA-336M Alloy Steel Forgings for Pressure and High-Temperature Parts .. 555
SA-351/SA-351M Castings, Austenitic, Austenitic-Ferritic (Duplex), for Pressure-Containing Parts .. 575
SA-358/SA-358M Electric-Fusion-Welded Austenitic Chromium-Nickel Alloy Steel Pipe for High-Temperature Service .. 605
SA-369/SA-369M Carbon and Ferritic Alloy Steel Forged and Bored Pipe for High-Temperature Service .. 615
SA-376/SA-376M Seamless Austenitic Steel Pipe for High-Temperature Central-Station Service .. 685
SA-403/SA-403M Wrought Austenitic Stainless Steel Piping Fittings .. 725
SA-409/SA-409M Welded Large Diameter Austenitic Steel Pipe for Corrosive or High-Temperature Service .. 735
SA-426/SA-426M Centrifugally Cast Ferritic Alloy Steel Pipe for High-Temperature Service .. 765
SA-437/SA-437M Alloy Steel Turbine-Type Bolting Material Specially Heat Treated for High-Temperature Service .. 775
SA-451/SA-451M Centrifugally Cast Austenitic Steel Pipe for High-Temperature Service .. 805
SA-479/SA-479M Stainless Steel Bars and Shapes for Use in Boilers and Other Pressure Vessels .. 831
SA-484/SA-484M General Requirements for Stainless Steel Bars, Billets, and Forgings .. 871
SA-515/SA-515M Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature Service .. 933
SA-564/SA-564M Hot-Rolled and Cold-Finished Age-Hardenig Stainless Steel Bars and Shapes .. 1047
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-638/SA-638M</td>
<td>Precipitation Hardening Iron Base Superalloy Bars, Forgings, and Forging Stock for High-Temperature Service</td>
</tr>
<tr>
<td>SA-660</td>
<td>Centrifugally Cast Carbon Steel Pipe for High-Temperature Service</td>
</tr>
<tr>
<td>SA-666</td>
<td>Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate and Flat Bar</td>
</tr>
<tr>
<td>SA-691</td>
<td>Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures</td>
</tr>
<tr>
<td>SA-705/SA-705M</td>
<td>Age-Hardenable Stainless Steel Forgings</td>
</tr>
<tr>
<td>SA-789/SA-789M</td>
<td>Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service</td>
</tr>
<tr>
<td>SA-790/SA-790M</td>
<td>Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe</td>
</tr>
<tr>
<td>SA-814/SA-814M</td>
<td>Cold-Worked Welded Austenitic Stainless Steel Pipe</td>
</tr>
<tr>
<td>SA-815/SA-815M</td>
<td>Wrought Ferritic, Ferritic/Austenitic, and Martensitic Stainless Steel Piping Fittings</td>
</tr>
<tr>
<td>SA-815</td>
<td>Castings, Austenitic-Ferritic (Duplex) Stainless Steel, for Pressure-Containing Parts</td>
</tr>
<tr>
<td>SA-47/SA-47M</td>
<td>Ferritic Malleable Iron Castings</td>
</tr>
<tr>
<td>SA-278/SA-278M</td>
<td>Gray Iron Castings for Pressure-Containing Parts for Temperatures Up to 650°F (350°C)</td>
</tr>
<tr>
<td>SA-395/SA-395M</td>
<td>Ferritic Ductile Iron Pressure-Retaining Castings for Use at Elevated Temperatures</td>
</tr>
<tr>
<td>SA-748/SA-748M</td>
<td>Statically Cast Chilled White Iron-Gray Iron Dual Metal Rolls for Pressure Vessel Use</td>
</tr>
<tr>
<td>SA-834</td>
<td>Common Requirements for Iron Castings for General Industrial Use</td>
</tr>
<tr>
<td>SA-275/SA-275M</td>
<td>Magnetic Particle Examination of Steel Forgings</td>
</tr>
<tr>
<td>SA-370</td>
<td>Test Methods and Definitions for Mechanical Testing of Steel Products</td>
</tr>
<tr>
<td>SA-388/SA-388M</td>
<td>Ultrasonic Examination of Heavy Steel Forgings</td>
</tr>
<tr>
<td>SA-435/SA-435M</td>
<td>Straight-Beam Ultrasonic Examination of Steel Plates</td>
</tr>
<tr>
<td>SA-577/SA-577M</td>
<td>Ultrasonic Angle-Beam Examination of Steel Plates</td>
</tr>
<tr>
<td>SA-578/SA-578M</td>
<td>Straight-Beam Ultrasonic Examination of Rolled Steel Plates for Special Applications</td>
</tr>
<tr>
<td>SA-745/SA-745M</td>
<td>Ultrasonic Examination of Austenitic Steel Forgings</td>
</tr>
<tr>
<td>SA-751</td>
<td>Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products</td>
</tr>
</tbody>
</table>
SPECIFICATION REMOVAL

From time to time, it becomes necessary to remove specifications from this Part of Section II. This occurs because the sponsoring society (e.g., ASTM, AWS, CEN) has notified ASME that the specification has either been replaced with another specification, or that there is no known use and production of a material. Removal of a specification from this Section also results in concurrent removal of the same specification from Section IX and from all of the ASME Boiler and Pressure Vessel Construction Codes that reference the material. This action effectively prohibits further use of the material in ASME Boiler and Pressure Vessel construction.

The following specifications will be dropped from this Section in the next Addenda (if applicable), unless information concerning current production and use of the material is received before December 1 of this year:

SA-557/SA-557M-90a (discontinued by ASTM in 1995, replaced by A 178/A 178M)¹

SA-731/SA-731M-91 (discontinued by ASTM in 1995, replaced by A 268/A 268M)¹

If you are currently using and purchasing new material to this specification for ASME Boiler and Pressure Vessel Code construction, and if discontinuance of this specification would present a hardship, please notify the Secretary of the ASME Boiler and Pressure Vessel Committee, at the address shown below:

Secretary
ASME Boiler and Pressure Vessel Committee
Three Park Avenue
New York, NY 10016-5990
Tel: (212) 591-8533
Fax: (212) 591-8501

¹ The replacement specifications are currently in Section II, Part A.
GUIDELINES ON SUBMITTAL OF TECHNICAL
INQUIRIES TO THE BOILER AND PRESSURE VESSEL
COMMITTEE

1 INTRODUCTION
(a) This guideline provides guidance to Code users for submitting technical inquiries to the Committee. See Guideline on the Approval of New Materials Under the ASME Boiler and Pressure Vessel Code in Section II, Parts C and D for additional requirements for requests involving adding new materials to the Code. Technical inquiries include requests for revisions or additions to the Code rules, requests for Code Cases, and requests for Code interpretations, as described below.

(1) Code Revisions. Code revisions are considered to accommodate technological developments, address administrative requirements, incorporate Code Cases, or to clarify Code intent.

(2) Code Cases. Code Cases represent alternatives or additions to existing Code rules. Code Cases are written as a question and reply, and are usually intended to be incorporated into the Code at a later date. When used, Code Cases prescribe mandatory requirements in the same sense as the text of the Code. However, users are cautioned that not all jurisdictions or owners automatically accept Code Cases. The most common applications for Code Cases are:
 (a) to permit early implementation of an approved Code revision based on an urgent need
 (b) to permit the use of a new material for Code construction
 (c) to gain experience with new materials or alternative rules prior to incorporation directly into the Code

(3) Code Interpretations. Code Interpretations provide clarification of the meaning of existing rules in the Code, and are also presented in question and reply format. Interpretations do not introduce new requirements. In cases where existing Code text does not fully convey the meaning that was intended, and revision of the rules is required to support an interpretation, an Intent Interpretation will be issued and the Code will be revised.

(b) The Code rules, Code Cases, and Code Interpretations established by the Committee are not to be considered as approving, recommending, certifying, or endorsing any proprietary or specific design, or as limiting in any way the freedom of manufacturers, constructors, or owners to choose any method of design or any form of construction that conforms to the Code rules.
(c) Inquiries that do not comply with the provisions of this Guideline or that do not provide sufficient information for the Committee’s full understanding may result in the request being returned to the inquirer with no action.

2 INQUIRY FORMAT
Submittals to the Committee shall include:
(a) Purpose. Specify one of the following:
 (1) revision of present Code rules
 (2) new or additional Code rules
 (3) Code Case
 (4) Code Interpretation

(b) Background. Provide the information needed for the Committee’s understanding of the inquiry, being sure to include reference to the applicable Code Section, Division, Edition, Addenda (if applicable), paragraphs, figures, and tables. Preferably, provide a copy of the specific referenced portions of the Code.

(c) Presentations. The inquirer may desire or be asked to attend a meeting of the Committee to make a formal presentation or to answer questions from the Committee members with regard to the inquiry. Attendance at a Committee meeting shall be at the expense of the inquirer. The inquirer’s attendance or lack of attendance at a meeting shall not be a basis for acceptance or rejection of the inquiry by the Committee.

3 CODE REVISIONS OR ADDITIONS
Requests for Code revisions or additions shall provide the following:
(a) Proposed Revisions or Additions. For revisions, identify the rules of the Code that require revision and submit a copy of the appropriate rules as they appear in the Code, marked up with the proposed revision. For additions, provide the recommended wording referenced to the existing Code rules.
(b) Statement of Need. Provide a brief explanation of the need for the revision or addition.

(c) Background Information. Provide background information to support the revision or addition, including any data or changes in technology that form the basis for the request that will allow the Committee to adequately evaluate the proposed revision or addition. Sketches, tables, figures, and graphs should be submitted as appropriate. When applicable, identify any pertinent paragraph in the Code that would be affected by the revision or addition and identify paragraphs in the Code that reference the paragraphs that are to be revised or added.

4 CODE CASES

Requests for Code Cases shall provide a Statement of Need and Background Information similar to that defined in 3(b) and 3(c), respectively, for Code revisions or additions. The urgency of the Code Case (e.g., project underway or imminent, new procedure, etc.) must be defined and it must be confirmed that the request is in connection with equipment that will be ASME stamped, with the exception of Section XI applications. The proposed Code Case should identify the Code Section and Division, and be written as a Question and a Reply in the same format as existing Code Cases. Requests for Code Cases should also indicate the applicable Code Editions and Addenda (if applicable) to which the proposed Code Case applies.

5 CODE INTERPRETATIONS

(a) Requests for Code Interpretations shall provide the following:

(1) Inquiry. Provide a condensed and precise question, omitting superfluous background information and, when possible, composed in such a way that a “yes” or a “no” Reply, with brief provisos if needed, is acceptable. The question should be technically and editorially correct.

(2) Reply. Provide a proposed Reply that will clearly and concisely answer the Inquiry question. Preferably, the Reply should be “yes” or “no,” with brief provisos if needed.

(3) Background Information. Provide any background information that will assist the Committee in understanding the proposed Inquiry and Reply.

(b) Requests for Code Interpretations must be limited to an interpretation of a particular requirement in the Code or a Code Case. The Committee cannot consider consulting type requests such as the following:

(1) a review of calculations, design drawings, welding qualifications, or descriptions of equipment or parts to determine compliance with Code requirements;

(2) a request for assistance in performing any Code-prescribed functions relating to, but not limited to, material selection, designs, calculations, fabrication, inspection, pressure testing, or installation;

(3) a request seeking the rationale for Code requirements.

6 SUBMITTALS

Submittals to and responses from the Committee shall meet the following:

(a) Submittal. Inquiries from Code users shall be in English and preferably be submitted in typewritten form; however, legible handwritten inquiries will also be considered. They shall include the name, address, telephone number, fax number, and e-mail address, if available, of the inquirer and be mailed to the following address:

Secretary
ASME Boiler and Pressure Vessel Committee
Three Park Avenue
New York, NY 10016-5990

As an alternative, inquiries may be submitted via e-mail to: SecretaryBPV@asme.org.

(b) Response. The Secretary of the ASME Boiler and Pressure Vessel Committee or of the appropriate Subcommittee shall acknowledge receipt of each properly prepared inquiry and shall provide a written response to the inquirer upon completion of the requested action by the Code Committee.
GUIDELINE ON THE APPROVAL OF NEW MATERIALS UNDER THE ASME BOILER AND PRESSURE VESSEL CODE

Code Policy. It is the policy of the ASME Boiler and Pressure Vessel Committee to adopt for inclusion in Section II only such specifications as have been adopted by the American Society for Testing and Materials (ASTM), by the American Welding Society (AWS), and by other recognized national or international organizations.

It is expected that requests for Code approval will normally be for materials for which there is a recognized national or international specification. For materials made to a recognized national or international specification other than those of ASTM or AWS, the inquirer shall give notice to the standards developing organization that a request has been made to ASME for adoption of their specification under the ASME Code and shall request that the organization grant ASME permission to reprint the specification.

For other materials, a request shall be made to ASTM, AWS, or a recognized national or international organization to develop a specification that can be presented to the Code Committee.

It is the policy of the ASME Boiler and Pressure Vessel Committee to consider requests to adopt new materials only from boiler, pressure vessel, or nuclear power plant component Manufacturers or users. Further, such requests should be for materials for which there is a reasonable expectation of use in a boiler, pressure vessel, or nuclear power plant component constructed to the rules of one of the Sections of this Code. Requests for new materials shall be accompanied by a communication from an ASME Certificate Holder, an end user, or an organization that specifies materials and contracts with Certificate Holders for the construction of products to the rules of one of the sections of this Code. The letter shall state the Inquirer’s name and status as one of these three types of organizations.

Application. The inquirer shall identify to the Committee the Section or Sections and Divisions of the Code in which the new material is to be incorporated, the temperature range of application, whether cyclic service is to be considered, and whether external pressure service is to be considered. The inquirer shall identify all product forms, size ranges, and specifications for which incorporation is desired.

Mechanical Properties. Together with the specification for the material, the inquirer shall furnish the Committee with adequate data on which to base design values for inclusion in the applicable tables. The data shall include values of ultimate tensile strength, yield strength, reduction of area, and elongation, at 100°F (or 50°C) intervals, from room temperature to 100°F (or 50°C) above the maximum intended use temperature, unless the maximum intended use temperature does not exceed 100°F. Any heat treatment that is required to produce the mechanical properties should be fully described.

If adoption is desired at temperatures at which time-dependent behavior may be expected to control design values, stress-rupture and creep rate data for these time-dependent properties shall be provided, starting at temperatures about 50°F (or 25°C) below the temperature where time-dependent properties may govern (see Appendix 1 of Section II, Part D) and extending to about 100°F (or 50°C) above the maximum intended use temperature. The longest rupture time at each test temperature must be in excess of 6000 hr and the shortest about 100 hr, with at least three additional tests at stresses selected to provide rupture times nominally equally spaced in log (time); i.e., times nominally of 100, 300, 800, 2200, and 6000 hr at each test temperature. Obviously, longer times and additional tests are beneficial. The interval between successive test temperatures shall be chosen such that rupture lives shall not differ by more than a factor of about 10 at any given stress for two adjacent temperatures. In general, test temperatures should be in about 50°F (or 25°C) intervals if maximum test times are no longer than 6000 hr. The goal of the testing is to facilitate data analysis to estimate the average and minimum stresses for rupture in 100,000 hr and an average creep rate of \(10^{-5}\) %/hr for each temperature where design stresses are established. Alternative test plans that deviate from the prior description but achieve the overall objective may be considered.

Minimum creep rate data shall be provided over the same range of temperatures as above, with the lowest stress at each temperature selected to achieve a minimum creep rate of \(1.0 \times 10^{-4}\) %/hr or less. Creep rate data may be obtained in the course of stress-rupture testing or may be

Copyright © 2010 by the American Society of Mechanical Engineers. No reproduction may be made of this material without written consent of ASME.
obtained on additional specimens. If it can be conclusively demonstrated that creep rate does not control the design stresses, the creep rate data may be sparse in relation to the stress-rupture data. Submission of creep curves for evaluation of creep rate behavior is acceptable and encouraged.

For materials that will be used in welded applications, sufficient time-dependent data shall be provided for weldments and filler metals to allow ASME to assess the properties in comparison with the base material. In the time-dependent range, this includes providing stress-rupture data for specimen tests in excess of 6000 hr at each temperature and for each welding process. In addition, minimum creep rate data on filler metals shall also be provided to rates below 1.0 to 2.0 × 10⁻⁴%/hr.

If adoption at temperatures below room temperature is requested, and if it is desired to take design advantage of increased strength at lower temperatures, data on the time-independent properties shall be provided at 100°F (or 50°C) intervals to and including the lowest intended use temperature.

Notch toughness data shall be provided for materials for which Code toughness rules would be expected to apply. The data shall include test results for the intended lowest service metal temperature and for the range of material thicknesses desired. For welded construction, the notch toughness data shall include the results of Code toughness tests for weld metal and heat-affected zone for weldments made by the intended welding processes.

If the material is to be used in components that operate under external pressure, stress–strain curves (tension or compression) shall be furnished, at 100°F (or 50°C) intervals over the range of design temperatures desired. External pressure charts are based on the early portion (up to 1% strain) of the stress–strain curve. The stress–strain curve (not load versus extension) shall be determined using a Class B-2 or better accuracy extensometer as defined in ASTM E 83. Numerical data, when available, should be submitted. The data should include the original cross-sectional area of the test specimen and stress–strain curves with units marked on them.

If the material is to be used in cyclic service and the construction Code in which adoption is desired requires explicit consideration of cyclic behavior, fatigue data shall also be furnished over the range of design temperatures desired.

In general, for all mechanical properties, data shall be provided from at least three heats of material meeting all of the requirements of a specification for at least one product form for which adoption is desired, for each test at each test temperature. When adoption for both cast and wrought product forms is desired, data from at least three heats each of a wrought and of a cast product form shall be submitted. It is desired that the data represent all product forms for which adoption is desired. For product forms for which the properties may be size dependent, data from products of different sizes, including the largest size for which adoption is desired, shall be provided.

Test methods employed shall be those referenced in or by the material specifications, or shall be appropriate ASTM test methods or recommended practices for the properties tested.

Information describing service experience in the temperature range contemplated will be useful to the Committee.

Other Properties. The inquirer shall furnish to the Committee adequate data necessary to establish values for coefficient of thermal expansion, thermal conductivity and diffusivity, Young’s modulus, shear modulus, and Poisson’s ratio, when the construction Code in which adoption is desired requires explicit consideration of these properties. Data shall be provided over the range of temperatures for which the material is to be used.

Weldability. The inquirer shall furnish complete data on the weldability of material intended for welding, including data on procedure qualification tests made in accordance with the requirements of Section IX. Welding tests shall be made over the full range of thickness in which the material is to be used. Pertinent information, such as postweld heat treatment required, susceptibility to air hardening, effect of welding procedure and heat-affected zone and weld metal notch toughness, and the amount of experience in welding the material shall be given.

Physical Changes. For new materials, it is important to know the structural stability characteristics and the degree of retention of properties with exposure at temperature. The influence of fabrication practices, such as forming, welding, and thermal treatment, on the mechanical properties, ductility, and microstructure of the material are important, particularly where degradation in properties may occur. Where particular temperature ranges of exposure or heat treatment, cooling rates, combinations of mechanical working and thermal treatments, fabrication practices, exposure to particular environments, etc., cause significant changes in the mechanical properties, microstructure, resistance to brittle fracture, etc., it is of prime importance to call attention to those conditions that should be avoided in service or in manufacture of parts or vessels from the material.

Requests for Additional Data. The Committee may request additional data, including data on properties or material behavior not explicitly treated in the construction Code in which adoption is desired.

New Materials Checklist. To assist inquirers desiring Code coverage for new materials, or extending coverage of existing materials, the Committee has developed the following checklist of items that ought to be addressed by
each inquiry. The Committee reserves the right to request additional data and application information when considering new materials.

(a) Has a qualified inquirer request been provided?
(b) Has a request either for revision to existing Code requirements or for a Code Case been defined?
(c) Has a letter to ASTM or AWS been submitted requesting coverage of the new material in a specification, and has a copy been submitted to the Committee? Alternatively, is this material already covered by a specification issued by a recognized national or international organization and has an English language version been provided?
(d) Has the construction Code and Division coverage been identified?
(e) Has the material been defined as ferrous or nonferrous and has the application (product forms, size range, and specification) been defined?
(f) Has the range (maximum/minimum) of temperature application been defined?
(g) Has mechanical property data been submitted (ultimate tensile strength, yield strength, reduction of area, and elongation at 100°F or 50°C intervals, from room temperature to 100°F or 50°C above the maximum intended use temperature for three heats of appropriate product forms and sizes)?
(h) If requested temperatures of coverage are above those at which time-dependent properties begin to govern design values, has appropriate time-dependent property data for base metal, weld metal, and weldments been submitted?
(i) If coverage below room temperature is requested, has appropriate mechanical property data below room temperature been submitted?
(j) Have toughness considerations required by the construction Code been defined and has appropriate data been submitted?
(k) Have external pressure considerations been defined and have stress-strain curves been submitted for the establishment of external pressure charts?
(l) Have cyclic service considerations and service limits been defined and has appropriate fatigue data been submitted?
(m) Has physical properties data (coefficient of thermal expansion, thermal conductivity and diffusivity, Young’s modulus, shear modulus, Poisson’s ratio) been submitted?
(n) Have welding requirements been defined and has procedure qualification test data been submitted?
(o) Has influence of fabrication practices on material properties been defined?

Requirements for Requests for ASME Acceptance of Material Specifications of Recognized National or International Organizations Other Than ASTM or AWS. The Committee will consider only requests for specifications in the English language and in U.S. or SI/metric units. The Committee will consider accepting specifications of recognized national or international organizations, such as, but not limited to, American Petroleum Institute (API), ASTM, AWS, Canadian Standards Association (CSA), European Committee for Standardization (CEN), and Japanese Standards Association (JIS). Material specifications of other than national or international organizations, such as those of material producers and suppliers, will not be considered for acceptance.

Requirements for Recognized National or International Specifications. Acceptable material specifications will be identified by date or edition. Approved edition(s) will be stated in the subtitle of the ASME specification. Eventually, acceptable previous editions will be listed in Section II, Parts A and B. Minimum requirements that must be contained in a material specification for which acceptance is being requested include such items as name of national or international organization, scope, reference documents, process, manufacture, conditions for delivery, heat treatment, chemical and tensile requirements, forming properties, testing specifications and requirements, workmanship, finish, marking, inspection, and rejection.

Publication of Recognized National or International Specifications. Specifications for which ASME has not been given permission to publish by the originating organization will be referenced on a cover sheet in Section II, Parts A and B. Information on obtaining a copy of those documents will be maintained in Nonmandatory Appendix A of those Parts. Documents that are referenced in accepted national or international material specifications will not be published by ASME. However, information on obtaining a copy of those documents will be maintained in Nonmandatory Appendix A of Section II, Parts A and B. Additions and exceptions to the material specification will be noted in the subtitle of the specification.

CEN Specifications. European standards are adopted by CEN in three official versions (English, French, and German). After the CEN adoption, to become applicable in a member country of CEN, a European standard shall be given the status of a national standard. During this process

(a) the text of the EN standard shall remain unaltered and shall be included as adopted by CEN.
(b) National Forewords and/or Annexes may be added to cover specific national practices, but shall not be in contradiction with the EN standard.
(c) a prefix XX (e.g., XX BS for United Kingdom, NF for France, and DIN for Germany) is added to the designation of the EN standard (e.g., BS EN 10028-1 and NF EN 10028-1).
(d) the date of adoption as a national standard will differ
from the date of adoption as an EN standard and may differ
from one country to another.

Written or electronic copies of EN standards can only
be obtained from European national standardization bodies
as XX EN (CEN does not sell EN standards). Conse-
quently, in order to maintain coherence and homogeneity
in the reference system, the mentions in the subtitle of the
corresponding ASME specification will refer to the EN
standard number without any prefix and to the year of
approval by CEN. It shall also be mentioned in the cover
sheet that the national parts do not apply for the ASME
specification.

Code Case. The Code Committee will consider the
issuance of an ASME Code Case, permitting the use of
a new material, provided that the following conditions
are met:

(a) the inquirer provides evidence that a request for
coverage of the material in a specification has been made
to ASTM or a recognized national or international organi-
ization

(b) the material is commercially available and can be
purchased within the proposed specification requirements

(c) the inquirer shows that there will be a reasonable
demand for the material by industry and that there exists
an urgency for approval by means of a Code Case

(d) the requests for approval of the material shall clearly
describe it in specification form, including such items as
scope, process, manufacture, conditions for delivery, heat
treatment, chemical and tensile requirements, forming
properties, testing specifications and requirements, work-
manship, finish, marking, inspection, and rejection

(e) all other requirements identified previously under
Code Policy and Application apply

(f) the inquirer shall furnish the Code Committee with
all the data specified in this Guideline
II

Part A

Ferrous Material Specifications
(SA-451 to End)

MATERIALS

ASME Boiler and Pressure Vessel Committee on Materials
CONTENTS

Specifications Listed by Materials .. ix
Specification Removal ... xvii
Guideline on Acceptable ASTM Editions ... xix
Guideline on Acceptable Non-ASTM Editions ... xxix
Summary of Changes .. xxx
List of Changes in Record Number Order ... xxxii

Specifications
SA-6/SA-6M General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling .. 1
SA-20/SA-20M General Requirements for Steel Plates for Pressure Vessels 83
SA-29/SA-29M Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements for 125
SA-31 Steel Rivets and Bars for Rivets, Pressure Vessels 143
SA-36/SA-36M Carbon Structural Steel .. 147
SA-47/SA-47M Ferritic Malleable Iron Castings .. 153
SA-53/SA-53M Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless ... 161
SA-105/SA-105M Carbon Steel Forgings for Piping Applications 189
SA-106/SA-106M Seamless Carbon Steel Pipe for High-Temperature Service 195
SA-134 Pipe, Steel, Electric-Fusion (Arc)-Welded (Sizes NPS 16 and Over) 207
SA-135 Electric-Resistance-Welded Steel Pipe 213
SA-178/SA-178M Electric-Resistance-Welded Carbon Steel and Carbon-Manganese Steel Boiler and Superheater Tubes .. 223
SA-179/SA-179M Seamless Cold-Drawn Low-Carbon Steel Heat-Exchanger and Condenser Tubes .. 229
SA-181/SA-181M Carbon Steel Forgings, for General-Purpose Piping 233
SA-182/SA-182M Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service 237
SA-192/SA-192M Seamless Carbon Steel Boiler Tubes for High-Pressure Service 257
SA-193/SA-193M Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature or High Pressure Service and Other Special Purpose Applications 261
SA-194/SA-194M Carbon and Alloy Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both .. 277
SA-202/SA-202M Pressure Vessel Plates, Alloy Steel, Chromium-Manganese-Silicon 293
SA-203/SA-203M Pressure Vessel Plates, Alloy Steel, Nickel 297
SA-204/SA-204M Pressure Vessel Plates, Alloy Steel, Molybdenum 301
SA-209/SA-209M Seamless Carbon-Molybdenum Alloy-Steel Boiler and Superheater Tubes ... 305
SA-210/SA-210M Seamless Medium-Carbon Steel Boiler and Superheater Tubes 311
SA-213/SA-213M Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes ... 315
SA-216/SA-216M Steel Castings, Carbon, Suitable for Fusion Welding for High-Temperature Service ... 331
SA-217/SA-217M Steel Castings, Martensitic Stainless and Alloy, for Pressure-Containing Parts, Suitable for High-Temperature Service 335
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-225/SA-225M</td>
<td>Pressure Vessel Plates, Alloy Steel, Manganese-Vanadium-Nickel</td>
<td>341</td>
</tr>
<tr>
<td>SA-231/SA-231M</td>
<td>Chromium-Vanadium Alloy Steel Spring Wire</td>
<td>345</td>
</tr>
<tr>
<td>SA-232/SA-232M</td>
<td>Chromium-Vanadium Alloy Steel Valve Spring Quality Wire</td>
<td>351</td>
</tr>
<tr>
<td>SA-234/SA-234M</td>
<td>Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High-Temperature Service</td>
<td>355</td>
</tr>
<tr>
<td>SA-240/SA-240M</td>
<td>Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications</td>
<td>365</td>
</tr>
<tr>
<td>SA-249/SA-249M</td>
<td>Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes</td>
<td>377</td>
</tr>
<tr>
<td>SA-250/SA-250M</td>
<td>Electric-Resistance-Welded Ferritic Alloy-Steel Boiler and Superheater Tubes</td>
<td>387</td>
</tr>
<tr>
<td>SA-263</td>
<td>Stainless Chromium Steel-Clad Plate</td>
<td>393</td>
</tr>
<tr>
<td>SA-264</td>
<td>Stainless Chromium-Nickel Steel-Clad Plate</td>
<td>401</td>
</tr>
<tr>
<td>SA-265</td>
<td>Nickel and Nickel-Base Alloy-Clad Steel Plate</td>
<td>409</td>
</tr>
<tr>
<td>SA-266/SA-266M</td>
<td>Carbon Steel Forgings for Pressure Vessel Components</td>
<td>417</td>
</tr>
<tr>
<td>SA-268/SA-268M</td>
<td>Seamless and Welded Ferritic and Martensitic Stainless Steel Tubing for General Service</td>
<td>423</td>
</tr>
<tr>
<td>SA-275/SA-275M</td>
<td>Magnetic Particle Examination of Steel Forgings</td>
<td>433</td>
</tr>
<tr>
<td>SA-276</td>
<td>Stainless Steel Bars and Shapes</td>
<td>441</td>
</tr>
<tr>
<td>SA-278/SA-278M</td>
<td>Gray Iron Castings for Pressure-Containing Parts for Temperatures Up to 650°F (350°C)</td>
<td>451</td>
</tr>
<tr>
<td>SA-283/SA-283M</td>
<td>Low and Intermediate Tensile Strength Carbon Steel Plates</td>
<td>457</td>
</tr>
<tr>
<td>SA-299/SA-299M</td>
<td>Pressure Vessel Plates, Carbon Steel, Manganese-Silicon</td>
<td>465</td>
</tr>
<tr>
<td>SA-302/SA-302M</td>
<td>Pressure Vessel Plates, Alloy Steel, Manganese-Molybdenum and Manganese-Molybdenum-Nickel</td>
<td>469</td>
</tr>
<tr>
<td>SA-307</td>
<td>Carbon Steel Bolts and Studs, 60 000 psi Tensile Strength</td>
<td>473</td>
</tr>
<tr>
<td>SA-311/SA-311M</td>
<td>Cold-Drawn, Stress-Relieved Carbon Steel Bars Subject to Mechanical Property Requirements</td>
<td>481</td>
</tr>
<tr>
<td>SA-312/SA-312M</td>
<td>Seamless and Welded Austenitic Stainless Steel Pipes</td>
<td>487</td>
</tr>
<tr>
<td>SA-320/SA-320M</td>
<td>Alloy Steel and Stainless Steel Bolting Materials for Low-Temperature Service</td>
<td>499</td>
</tr>
<tr>
<td>SA-325</td>
<td>Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength</td>
<td>509</td>
</tr>
<tr>
<td>SA-333/SA-333M</td>
<td>Seamless and Welded Steel Pipe for Low-Temperature Service</td>
<td>519</td>
</tr>
<tr>
<td>SA-334/SA-334M</td>
<td>Seamless and Welded Carbon and Alloy-Steel Tubes for Low-Temperature Service</td>
<td>531</td>
</tr>
<tr>
<td>SA-335/SA-335M</td>
<td>Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service</td>
<td>541</td>
</tr>
<tr>
<td>SA-336/SA-336M</td>
<td>Alloy Steel Forgings for Pressure and High-Temperature Parts</td>
<td>555</td>
</tr>
<tr>
<td>SA-350/SA-350M</td>
<td>Carbon and Low-Alloy Steel Forgings, Requiring Notch Toughness Testing for Piping Components</td>
<td>563</td>
</tr>
<tr>
<td>SA-351/SA-351M</td>
<td>Castings, Austenitic, Austenitic-Ferritic (Duplex), for Pressure-Containing Parts</td>
<td>575</td>
</tr>
<tr>
<td>SA-352/SA-352M</td>
<td>Steel Castings, Ferritic and Martensitic, for Pressure Containing Parts, Suitable for Low Temperature Service</td>
<td>583</td>
</tr>
<tr>
<td>SA-353/SA-353M</td>
<td>Pressure Vessel Plates, Alloy Steel, 9 Percent Nickel, Double-Normalized and Tempered</td>
<td>591</td>
</tr>
<tr>
<td>SA-354</td>
<td>Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners</td>
<td>597</td>
</tr>
<tr>
<td>SA-358/SA-358M</td>
<td>Electric-Fusion-Welded Austenitic Chromium-Nickel Alloy Steel Pipe for High-Temperature Service</td>
<td>605</td>
</tr>
<tr>
<td>SA-369/SA-369M</td>
<td>Carbon and Ferritic Alloy Steel Forged and Bored Pipe for High-Temperature Service</td>
<td>615</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>SA-370</td>
<td>Test Methods and Definitions for Mechanical Testing of Steel Products</td>
<td></td>
</tr>
<tr>
<td>SA-372/SA-372M</td>
<td>Carbon and Alloy Steel Forgings for Thin-Walled Pressure Vessels</td>
<td></td>
</tr>
<tr>
<td>SA-376/SA-376M</td>
<td>Seamless Austenitic Steel Pipe for High-Temperature Central-Station Service</td>
<td></td>
</tr>
<tr>
<td>SA-387/SA-387M</td>
<td>Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum</td>
<td></td>
</tr>
<tr>
<td>SA-388/SA-388M</td>
<td>Ultrasonic Examination of Heavy Steel Forgings</td>
<td></td>
</tr>
<tr>
<td>SA-395/SA-395M</td>
<td>Ferritic Ductile Iron Pressure-Retaining Castings for Use at Elevated Temperatures</td>
<td></td>
</tr>
<tr>
<td>SA-403/SA-403M</td>
<td>Wrought Austenitic Stainless Steel Piping Fittings</td>
<td></td>
</tr>
<tr>
<td>SA-409/SA-409M</td>
<td>Welded Large Diameter Austenitic Steel Pipe for Corrosive or High-Temperature Service</td>
<td></td>
</tr>
<tr>
<td>SA-414/SA-414M</td>
<td>Sheet, Carbon, for Pressure Vessels</td>
<td></td>
</tr>
<tr>
<td>SA-420/SA-420M</td>
<td>Piping Fittings of Wrought Carbon Steel and Alloy Steel for Low-Temperature Service</td>
<td></td>
</tr>
<tr>
<td>SA-423/SA-423M</td>
<td>Seamless and Electric-Welded Low-Alloy Steel Tubes</td>
<td></td>
</tr>
<tr>
<td>SA-426/SA-426M</td>
<td>Centrifugally Cast Ferritic Alloy Steel Pipe for High-Temperature Service</td>
<td></td>
</tr>
<tr>
<td>SA-435/SA-435M</td>
<td>Straight-Beam Ultrasonic Examination of Steel Plates</td>
<td></td>
</tr>
<tr>
<td>SA-437/SA-437M</td>
<td>Alloy Steel Turbine-Type Bolting Material Specially Heat Treated for High-Temperature Service</td>
<td></td>
</tr>
<tr>
<td>SA-449</td>
<td>Hex Cap Screws, Bolts and Studs, Steel, Heat Treated, 120/105/90 ksi Minimum Tensile Strength, General Use</td>
<td></td>
</tr>
<tr>
<td>SA-450/SA-450M</td>
<td>General Requirements for Carbon, Ferritic Alloy, and Austenitic Alloy Steel Tubes</td>
<td></td>
</tr>
<tr>
<td>SA-451/SA-451M</td>
<td>Centrifugally Cast Austenitic Steel Pipe for High-Temperature Service</td>
<td></td>
</tr>
<tr>
<td>SA-453/SA-453M</td>
<td>High-Temperature Bolting Materials With Expansion Coefficients</td>
<td></td>
</tr>
<tr>
<td>SA-455/SA-455M</td>
<td>Pressure Vessel Plates, Carbon Steel, High-Strength Manganese</td>
<td></td>
</tr>
<tr>
<td>SA-479/SA-479M</td>
<td>Stainless Steel Bars and Shapes for Use in Boilers and Other Pressure Vessels</td>
<td></td>
</tr>
<tr>
<td>SA-480/SA-480M</td>
<td>General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip</td>
<td></td>
</tr>
<tr>
<td>SA-484/SA-484M</td>
<td>General Requirements for Stainless Steel Bars, Billets, and Forgings</td>
<td></td>
</tr>
<tr>
<td>SA-487/SA-487M</td>
<td>Steel Castings Suitable for Pressure Service</td>
<td></td>
</tr>
<tr>
<td>SA-494/SA-494M</td>
<td>Castings, Nickel and Nickel Alloy</td>
<td></td>
</tr>
<tr>
<td>SA-508/SA-508M</td>
<td>Quenched and Tempered Vacuum-Treated Carbon and Alloy Steel Forgings for Pressure Vessels</td>
<td></td>
</tr>
<tr>
<td>SA-513</td>
<td>Electric-Resistance-Welded Carbon and Alloy Steel Mechanical Tubing</td>
<td></td>
</tr>
<tr>
<td>SA-515/SA-515M</td>
<td>Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature Service</td>
<td></td>
</tr>
<tr>
<td>SA-516/SA-516M</td>
<td>Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service</td>
<td></td>
</tr>
<tr>
<td>SA-517/SA-517M</td>
<td>Pressure Vessel Plates, Alloy Steel, High Strength, Quenched and Tempered.</td>
<td></td>
</tr>
<tr>
<td>SA-522/SA-522M</td>
<td>Forged or Rolled 8 and 9% Nickel Alloy Steel Flanges, Fittings, Valves, and Parts for Low-Temperature Service</td>
<td></td>
</tr>
<tr>
<td>SA-524</td>
<td>Seamless Carbon Steel Pipe for Atmospheric and Lower Temperatures</td>
<td></td>
</tr>
<tr>
<td>SA-530/SA-530M</td>
<td>General Requirements for Specialized Carbon and Alloy Steel Pipe</td>
<td></td>
</tr>
<tr>
<td>SA-533/SA-533M</td>
<td>Pressure Vessel Plates, Alloy Steel, Quenched and Tempered, Manganese-Molybdenum and Manganese-Molybdenum-Nickel</td>
<td></td>
</tr>
<tr>
<td>SA-537/SA-537M</td>
<td>Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel</td>
<td></td>
</tr>
<tr>
<td>SA-540/SA-540M</td>
<td>Alloy Steel Bolting Materials for Special Applications</td>
<td></td>
</tr>
</tbody>
</table>
SA-541/SA-541M Quenched and Tempered Carbon and Alloy Steel Forgings for Pressure Vessel Components .. 995
SA-543/SA-543M Pressure Vessel Plates, Alloy Steel, Quenched and Tempered, Nickel-Chromium-Molybdenum ... 1009
SA-553/SA-553M Pressure Vessel Plates, Alloy Steel, Quenched and Tempered 8 and 9% Nickel .. 1013
SA-556/SA-556M Seamless Cold-Drawn Carbon Steel Feedwater Heater Tubes .. 1019
SA-557/SA-557M Electric-Resistance-Welded Carbon Steel Feedwater Heater Tubes ... 1025
SA-562/SA-562M Pressure Vessel Plates, Carbon Steel, Manganese-Titanium for Glass or Diffused Metallic Coatings ... 1031
SA-563 Carbon and Alloy Steel Nuts .. 1035
SA-564/SA-564M Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes ... 1047
SA-568/SA-568M Steel, Sheet, Carbon, Structural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, General Requirements for 1057
SA-572/SA-572M High-Strength Low-Alloy Columbium-Vanadium Structural Steel ... 1091
SA-574 Alloy Steel Socket-Head Cap Screws .. 1097
SA-577/SA-577M Ultrasonic Angle-Beam Examination of Steel Plates .. 1105
SA-578/SA-578M Straight-Beam Ultrasonic Examination of Rolled Steel Plates for Special Applications ... 1109
SA-587 Electric-Resistance-Welded Low-Carbon Steel Pipe for the Chemical Industry .. 1115
SA-592/SA-592M High-Strength Quenched and Tempered Low-Alloy Steel Forged Fittings and Parts for Pressure Vessels .. 1123
SA-609/SA-609M Castings, Carbon, Low-Alloy, and Martensitic Stainless Steel, Ultrasonic Examination Thereof ... 1127
SA-612/SA-612M Pressure Vessel Plates, Carbon Steel, High Strength, for Moderate and Lower Temperature Service .. 1139
SA-638/SA-638M Precipitation Hardening Iron Base Superalloy Bars, Forgings, and Forging Stock for High-Temperature Service 1143
SA-645/SA-645M Pressure Vessel Plates, 5% and 5 1⁄2% Nickel Alloy Steels, Specially Heat Treated ... 1147
SA-649/SA-649M Forged Steel Rolls Used for Corrugating Paper Machinery .. 1153
SA-656/SA-656M Hot-Rolled Structural Steel, High-Strength Low-Alloy Plate With Improved Formability ... 1159
SA-660 Centrifugally Cast Carbon Steel Pipe for High-Temperature Service .. 1161
SA-662/SA-662M Pressure Vessel Plates, Carbon-Manganese-Silicon Steel, for Moderate and Lower Temperature Service .. 1167
SA-666 Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate, and Flat Bar .. 1173
SA-667/SA-667M Centrifugally Cast Dual Metal (Gray and White Cast Iron) Cylinders .. 1183
SA-671 Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures .. 1185
SA-672 Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures ... 1195
SA-675/SA-675M Steel Bars, Carbon, Hot-Wrought, Special Quality, Mechanical Properties .. 1203
SA-688/SA-688M Welded Austenitic Stainless Steel Feedwater Heater Tubes .. 1209
SA-691 Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures ... 1219
SA-693 Precipitation-Hardening Stainless and Heat-Resisting Steel Plate, Sheet, and Strip .. 1227
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-695</td>
<td>Steel Bars, Carbon, Hot-Wrought, Special Quality, for Fluid Power Applications</td>
</tr>
<tr>
<td>SA-696</td>
<td>Steel Bars, Carbon, Hot-Wrought or Cold-Finished, Special Quality, for Pressure Piping Components</td>
</tr>
<tr>
<td>SA-703/SA-703M</td>
<td>Steel Castings, General Requirements, for Pressure-Containing Parts</td>
</tr>
<tr>
<td>SA-705/SA-705M</td>
<td>Age-Hardening Stainless Steel Forgings</td>
</tr>
<tr>
<td>SA-723/SA-723M</td>
<td>Alloy Steel Forgings for High-Strength Pressure Component Application</td>
</tr>
<tr>
<td>SA-724/SA-724M</td>
<td>Pressure Vessel Plates, Carbon-Manganese-Silicon Steel, Quenched and Tempered, for Welded Layered Pressure Vessels</td>
</tr>
<tr>
<td>SA-727/SA-727M</td>
<td>Carbon Steel Forgings for Piping Components With Inherent Notch Toughness</td>
</tr>
<tr>
<td>SA-731/SA-731M</td>
<td>Seamless, Welded Ferritic, and Martensitic Stainless Steel Pipe</td>
</tr>
<tr>
<td>SA-736/SA-736M</td>
<td>Pressure Vessel Plates, Low-Carbon Age-Hardening Nickel-Copper-Chromium-Molybdenum-Columbium and Nickel-Copper-Manganese-Molybdenum-Columbium Alloy Steel</td>
</tr>
<tr>
<td>SA-737/SA-737M</td>
<td>Pressure Vessel Plates, High-Strength, Low-Alloy Steel</td>
</tr>
<tr>
<td>SA-738/SA-738M</td>
<td>Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel, for Moderate and Lower Temperature Service</td>
</tr>
<tr>
<td>SA-739</td>
<td>Steel Bars, Alloy, Hot-Wrought, for Elevated Temperature or Pressure-Containing Parts, or Both</td>
</tr>
<tr>
<td>SA-745/SA-745M</td>
<td>Ultrasonic Examination of Austenitic Steel Forgings</td>
</tr>
<tr>
<td>SA-747/SA-747M</td>
<td>Steel Castings, Stainless, Precipitation Hardening</td>
</tr>
<tr>
<td>SA-748/SA-748M</td>
<td>Statically Cast Chilled White Iron-Gray Iron Dual Metal Rolls for Pressure Vessel Use</td>
</tr>
<tr>
<td>SA-749/SA-749M</td>
<td>Steel, Strip, Carbon and High-Strength, Low-Alloy, Hot-Rolled, General Requirements for</td>
</tr>
<tr>
<td>SA-751</td>
<td>Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products</td>
</tr>
<tr>
<td>SA-765/SA-765M</td>
<td>Carbon Steel and Low-Alloy Steel Pressure-Vessel-Component Forgings With Mandatory Toughness Requirements</td>
</tr>
<tr>
<td>SA-770/SA-770M</td>
<td>Through-Thickness Tension Testing of Steel Plates for Special Applications</td>
</tr>
<tr>
<td>SA-781/SA-781M</td>
<td>Castings, Steel and Alloy, Common Requirements, for General Industrial Use</td>
</tr>
<tr>
<td>SA-788/SA-788M</td>
<td>Steel Forgings, General Requirements</td>
</tr>
<tr>
<td>SA-789/SA-789M</td>
<td>Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service</td>
</tr>
<tr>
<td>SA-790/SA-790M</td>
<td>Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe</td>
</tr>
<tr>
<td>SA-803/SA-803M</td>
<td>Welded Ferritic Stainless Steel Feedwater Heater Tubes</td>
</tr>
<tr>
<td>SA-813/SA-813M</td>
<td>Single- or Double-Welded Austenitic Stainless Steel Pipe</td>
</tr>
<tr>
<td>SA-814/SA-814M</td>
<td>Cold-Worked Welded Austenitic Stainless Steel Pipe</td>
</tr>
<tr>
<td>SA-815/SA-815M</td>
<td>Wrought Ferritic, Ferritic/Austenitic, and Martensitic Stainless Steel Piping Fittings</td>
</tr>
<tr>
<td>SA-832/SA-832M</td>
<td>Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum-Vanadium</td>
</tr>
<tr>
<td>SA-834</td>
<td>Common Requirements for Iron Castings for General Industrial Use</td>
</tr>
<tr>
<td>SA-836/SA-836M</td>
<td>Titanium-Stabilized Carbon Steel Forgings for Glass-Lined Piping and Pressure Vessel Service</td>
</tr>
<tr>
<td>SA-841/SA-841M</td>
<td>Steel Plates for Pressure Vessels, Produced by Thermo-Mechanical Control Process (TMCP)</td>
</tr>
<tr>
<td>SA-905</td>
<td>Steel Wire, Pressure Vessel Winding</td>
</tr>
<tr>
<td>SA-941</td>
<td>Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>SA-960/SA-960M</td>
<td>Common Requirements for Wrought Steel Piping Fittings</td>
</tr>
<tr>
<td>SA-961/SA-961M</td>
<td>Common Requirements for Steel Flanges, Forged Fittings, Valves and Parts for Piping Applications</td>
</tr>
<tr>
<td>SA-962/SA-962M</td>
<td>Common Requirements for Steel Fasteners or Fastener Materials, or Both, Intended for Use at Any Temperature From Cryogenic to the Creep Range</td>
</tr>
<tr>
<td>SA-965/SA-965M</td>
<td>Steel Forgings, Austenitic, for Pressure and High Temperature Parts</td>
</tr>
<tr>
<td>SA-985/SA-985M</td>
<td>Steel Investment Castings General Requirements, for Pressure-Containing Parts</td>
</tr>
<tr>
<td>SA-995</td>
<td>Castings, Austenitic-Ferritic (Duplex) Stainless Steel, for Pressure-Containing Parts</td>
</tr>
<tr>
<td>SA-999/SA-999M</td>
<td>General Requirements for Alloy and Stainless Steel Pipe</td>
</tr>
<tr>
<td>SA-1008/SA-1008M</td>
<td>Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy With Improved Formability</td>
</tr>
<tr>
<td>SA-1010/SA-1010M</td>
<td>Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip</td>
</tr>
<tr>
<td>SA-1011/SA-1011M</td>
<td>Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy With Improved Formability, and Ultra-High Strength</td>
</tr>
<tr>
<td>SA-1016/SA-1016M</td>
<td>General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes</td>
</tr>
<tr>
<td>SA-1017/SA-1017M</td>
<td>Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum-Tungsten</td>
</tr>
<tr>
<td>SF-568M</td>
<td>Carbon and Alloy Steel Externally Threaded Metric Fasteners</td>
</tr>
<tr>
<td>SA/AS 1548</td>
<td>Steel Plates for Pressure Equipment</td>
</tr>
<tr>
<td>SA/CSCA-G40.21</td>
<td>Structural Quality Steels</td>
</tr>
<tr>
<td>SA/EN 10028-2</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 2: Non-Alloy and Alloy Steels With Specified Elevated Temperature Properties</td>
</tr>
<tr>
<td>SA/EN 10028-3</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 3: Weldable Fine Grain Steels, Normalized</td>
</tr>
<tr>
<td>SA/EN 10028-7</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 7: Stainless Steels</td>
</tr>
<tr>
<td>SA/GB 6654</td>
<td>Steel Plates for Pressure Vessels</td>
</tr>
<tr>
<td>SA/JIS G3118</td>
<td>Carbon Steel Plates for Pressure Vessels for Intermediate and Moderate Temperature Service</td>
</tr>
<tr>
<td>SA/JIS G4303</td>
<td>Stainless Steel Bars</td>
</tr>
</tbody>
</table>

MANDATORY APPENDIX

I Standard Units for Use in Equations 1651

NONMANDATORY APPENDIX

A Sources of Standards ... 1653
SPECIFICATIONS LISTED BY MATERIALS

Steel Plate, Sheets and Strip

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-568/SA-568M</td>
<td>Steel, Sheet, Carbon Structural, and High-Strength, Low-Alloy, Hor-Rolled and Cold-Rolled, General Requirements for</td>
<td>1057</td>
</tr>
<tr>
<td>SA-749/SA-749M</td>
<td>Steel, Strip, Carbon and High-Strength, Low-Alloy, Hot-Rolled</td>
<td>1327</td>
</tr>
</tbody>
</table>

Steel Pipe

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-53/SA-53M</td>
<td>Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless</td>
<td>161</td>
</tr>
<tr>
<td>SA-106/SA-106M</td>
<td>Seamless Carbon Steel Pipe for High-Temperature Service</td>
<td>195</td>
</tr>
<tr>
<td>SA-134</td>
<td>Pipe, Steel, Electric-Fusion (Arc)-Welded (Sizes NPS 16 and Over)</td>
<td>207</td>
</tr>
<tr>
<td>SA-135</td>
<td>Electric-Resistance-Welded Steel Pipe</td>
<td>213</td>
</tr>
<tr>
<td>SA-312/SA-312M</td>
<td>Seamless and Welded Austenitic Stainless Steel Pipes</td>
<td>487</td>
</tr>
<tr>
<td>SA-333/SA-333M</td>
<td>Seamless and Welded Steel Pipe for Low-Temperature Service</td>
<td>519</td>
</tr>
<tr>
<td>SA-335/SA-335M</td>
<td>Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service</td>
<td>541</td>
</tr>
<tr>
<td>SA-358/SA-358M</td>
<td>Electric-Fusion-Welded Austenitic Chromium-Nickel Alloy Steel Pipe for High-Temperature Service</td>
<td>605</td>
</tr>
<tr>
<td>SA-369/SA-369M</td>
<td>Carbon and Ferritic Alloy Steel Forged and Bored Pipe for High-Temperature Service</td>
<td>615</td>
</tr>
<tr>
<td>SA-376/SA-376M</td>
<td>Seamless Austenitic Steel Pipe for High-Temperature Central-Station Service</td>
<td>685</td>
</tr>
<tr>
<td>SA-409/SA-409M</td>
<td>Welded Large Diameter Austenitic Steel Pipe for Corrosive or High-Temperature Service</td>
<td>735</td>
</tr>
<tr>
<td>SA-426/SA-426M</td>
<td>Centrifugally Cast Ferritic Alloy Steel Pipe for High-Temperature Service</td>
<td>765</td>
</tr>
<tr>
<td>SA-451/SA-451M</td>
<td>Centrifugally Cast Austenitic Steel Pipe for High-Temperature Service</td>
<td>805</td>
</tr>
<tr>
<td>SA-524</td>
<td>Seamless Carbon Steel Pipe for Atmospheric and Lower Temperatures</td>
<td>953</td>
</tr>
<tr>
<td>SA-530/SA-530M</td>
<td>General Requirements for Specialized Carbon and Alloy Steel Pipe</td>
<td>963</td>
</tr>
<tr>
<td>SA-587</td>
<td>Electric-Resistance-Welded Low-Carbon Steel Pipe for the Chemical Industry</td>
<td>1115</td>
</tr>
<tr>
<td>SA-660</td>
<td>Centrifugally Cast Carbon Steel Pipe for High-Temperature Service</td>
<td>1161</td>
</tr>
<tr>
<td>SA-671</td>
<td>Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures</td>
<td>1185</td>
</tr>
<tr>
<td>SA-672</td>
<td>Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures</td>
<td>1195</td>
</tr>
<tr>
<td>SA-691</td>
<td>Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures</td>
<td>1219</td>
</tr>
<tr>
<td>SA-727/SA-727M</td>
<td>Carbon Steel Forgings for Piping Components With Inherent Notch Toughness</td>
<td>1281</td>
</tr>
<tr>
<td>SA-731/SA-731M</td>
<td>Seamless, Welded Ferritic, and Martensitic Stainless Steel Pipe</td>
<td>1287</td>
</tr>
<tr>
<td>SA-790/SA-790M</td>
<td>Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe</td>
<td>1403</td>
</tr>
<tr>
<td>SA-813/SA-813M</td>
<td>Single- or Double-Welded Austenitic Stainless Steel Pipe</td>
<td>1427</td>
</tr>
<tr>
<td>SA-814/SA-814M</td>
<td>Cold-Worked Welded Austenitic Stainless Steel Pipe</td>
<td>1437</td>
</tr>
<tr>
<td>SA-941</td>
<td>Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys.</td>
<td>1485</td>
</tr>
<tr>
<td>Standard</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>SA-961/SA-961M</td>
<td>Common Requirements for Steel Flanges, Forged Fittings, Valves and Parts for Piping Applications</td>
<td>1563</td>
</tr>
<tr>
<td>SA-999/SA-999M</td>
<td>General Requirements for Alloy and Stainless Steel Pipe</td>
<td>1563</td>
</tr>
</tbody>
</table>

Steel Tubes

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-178/SA-178M</td>
<td>Electric-Resistance-Welded Carbon Steel and Carbon-Manganese Steel Boiler and Superheater Tubes</td>
<td>223</td>
</tr>
<tr>
<td>SA-179/SA-179M</td>
<td>Seamless Cold-Drawn Low-Carbon Steel Heat-Exchanger and Condenser Tubes</td>
<td>229</td>
</tr>
<tr>
<td>SA-192/SA-192M</td>
<td>Seamless Carbon Steel Boiler Tubes for High-Pressure Service</td>
<td>257</td>
</tr>
<tr>
<td>SA-209/SA-209M</td>
<td>Seamless Carbon-Molybdenum Alloy-Steel Boiler and Superheater Tubes</td>
<td>305</td>
</tr>
<tr>
<td>SA-210/SA-210M</td>
<td>Seamless Medium-Carbon Steel Boiler and Superheater Tubes</td>
<td>311</td>
</tr>
<tr>
<td>SA-213/SA-213M</td>
<td>Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes</td>
<td>315</td>
</tr>
<tr>
<td>SA-249/SA-249M</td>
<td>Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes</td>
<td>377</td>
</tr>
<tr>
<td>SA-250/SA-250M</td>
<td>Electric-Resistance-Welded Ferritic Alloy-Steel Boiler and Superheater Tubes</td>
<td>387</td>
</tr>
<tr>
<td>SA-268/SA-268M</td>
<td>Seamless and Welded Ferritic and Martensitic Stainless Steel Tubing for General Service</td>
<td>423</td>
</tr>
<tr>
<td>SA-334/SA-334M</td>
<td>Seamless and Welded Carbon and Alloy-Steel Tubes for Low-Temperature Service</td>
<td>531</td>
</tr>
<tr>
<td>SA-423/SA-423M</td>
<td>Seamless and Electric, Welded Low-Alloy Steel Tubes</td>
<td>759</td>
</tr>
<tr>
<td>SA-450/SA-450M</td>
<td>General Requirements for Carbon, Ferritic Alloy, and Austenitic Alloy Steel Tubes</td>
<td>793</td>
</tr>
<tr>
<td>SA-513</td>
<td>Electric-Resistance-Welded Carbon and Alloy Steel Mechanical Tubing</td>
<td>907</td>
</tr>
<tr>
<td>SA-556/SA-556M</td>
<td>Seamless Cold-Drawn Carbon Steel Feedwater Heater Tubes</td>
<td>1019</td>
</tr>
<tr>
<td>SA-557/SA-557M</td>
<td>Electric-Resistance-Welded Carbon Steel Feedwater Heater Tubes</td>
<td>1025</td>
</tr>
<tr>
<td>SA-688/SA-688M</td>
<td>Welded Austenitic Stainless Steel Feedwater Heater Tubes</td>
<td>1209</td>
</tr>
<tr>
<td>SA-789/SA-789M</td>
<td>Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service</td>
<td>1395</td>
</tr>
<tr>
<td>SA-803/SA-803M</td>
<td>Welded Ferritic Stainless Steel Feedwater Heater Tubes</td>
<td>1415</td>
</tr>
<tr>
<td>SA-941</td>
<td>Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys</td>
<td>1485</td>
</tr>
<tr>
<td>SA-1016/SA-1016M</td>
<td>General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes</td>
<td>1601</td>
</tr>
</tbody>
</table>

Steel Flanges, Fittings, Valves, and Parts

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-105/SA-105M</td>
<td>Carbon Steel Forgings, for Piping Applications</td>
<td>189</td>
</tr>
<tr>
<td>SA-181/SA-181M</td>
<td>Carbon Steel Forgings, for General-Purpose Piping</td>
<td>233</td>
</tr>
<tr>
<td>SA-182/SA-182M</td>
<td>Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service</td>
<td>237</td>
</tr>
<tr>
<td>SA-216/SA-216M</td>
<td>Steel Castings, Carbon, Suitable for Fusion Welding for High-Temperature Service</td>
<td>331</td>
</tr>
<tr>
<td>SA-217/SA-217M</td>
<td>Steel Castings, Martensitic Stainless and Alloy, for Pressure-Containing Parts, Suitable for High-Temperature Service</td>
<td>335</td>
</tr>
<tr>
<td>SA-231/SA-231M</td>
<td>Chromium-Vanadium Alloy Steel Spring Wire</td>
<td>345</td>
</tr>
<tr>
<td>SA-232/SA-232M</td>
<td>Chromium-Vanadium Alloy Steel Valve Spring Quality Wire</td>
<td>351</td>
</tr>
<tr>
<td>SA-234/SA-234M</td>
<td>Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High-Temperature Service</td>
<td>355</td>
</tr>
</tbody>
</table>
SA-350/SA-350M Carbon and Low-Alloy Steel Forgings, Requiring Notch Toughness Testing for Piping Components .. 563
SA-351/SA-351M Castings, Austenitic, Austenitic-Ferritic (Duplex), for Pressure-Containing Parts .. 575
SA-352/SA-352M Steel Castings, Ferritic and Martensitic, for Pressure Containing Parts, Suitable for Low-Temperature Service 583
SA-403/SA-403M Wrought Austenitic Stainless Steel Piping Fittings ... 725
SA-420/SA-420M Piping Fittings of Wrought Carbon Steel and Alloy Steel for Low-Temperature Service .. 749
SA-522/SA-522M Forged or Rolled 8 and 9% Nickel Alloy Steel Flanges, Fittings, Valves, and Parts for Low-Temperature Service 947
SA-592/SA-592M High-Strength Quenched and Tempered Low-Alloy Steel Forged Fittings and Parts for Pressure Vessels 1123
SA-815/SA-815M Wrought Ferritic, Ferritic/Austenitic, and Martensitic Stainless Steel Piping Fittings ... 1145
SA-905 Steel Wire, Pressure Vessel Winding .. 1479
SA-960/SA-960M Common Requirements for Wrought Steel Piping Fittings .. 1493
SA-961/SA-961M Common Requirements for Steel Flanges, Forged Fittings, Valves and Parts for Piping Applications ... 1505
SA-985/SA-985M Steel Investment Castings General Requirements for Pressure-Containing Parts .. 1539
SA-995 Castings, Austenitic-Ferritic (Duplex) Stainless Steel, for Pressure-Containing Parts ... 1559

Steel Plates, Sheets, and Strip for Pressure Vessels
SA-20/SA-20M General Requirements for Steel Plates for Pressure Vessels 83
SA-202/SA-202M Pressure Vessel Plates, Alloy Steel, Chromium-Manganese-Silicon 293
SA-203/SA-203M Pressure Vessel Plates, Alloy Steel, Nickel 297
SA-204/SA-204M Pressure Vessel Plates, Alloy Steel, Molybdenum 301
SA-225/SA-225M Pressure Vessel Plates, Alloy Steel, Manganese-Vanadium-Nickel 341
SA-240/SA-240M Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications 365
SA-263 Stainless Chromium Steel-Clad Plate .. 393
SA-264 Stainless Chromium-Nickel Steel-Clad Plate .. 401
SA-265 Nickel and Nickel-Base Alloy-Clad Steel Plate .. 409
SA-299/SA-299M Pressure Vessel Plates, Carbon Steel, Manganese-Silicon 465
SA-302/SA-302M Pressure Vessel Plates, Alloy Steel, Manganese-Molybdenum and Manganese-Molybdenum-Nickel .. 469
SA-353/SA-353M Pressure Vessel Plates, Alloy Steel, 9 Percent Nickel, Double-Normalized and Tempered ... 591
SA-387/SA-387M Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum 645
SA-414/SA-414M Steel, Sheet, Carbon, for Pressure Vessels .. 745
SA-455/SA-455M Pressure Vessel Plates, Carbon Steel, High-Strength Manganese 821
SA-480/SA-480M General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip ... 843
SA-515/SA-515M Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature Service .. 933
SA-516/SA-516M Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service .. 937
SA-517/SA-517M Pressure Vessel Plates, Alloy Steel, High Strength, Quenched and Tempered .. 943

Copyright © 2010 by the American Society of Mechanical Engineers.
No reproduction may be made of this material without written consent of ASME.
<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-533/SA-533M</td>
<td>Pressure Vessel Plates, Alloy Steel, Quenched and Tempered, Manganese-Molybdenum and Manganese-Molybdenum-Nickel.</td>
</tr>
<tr>
<td>SA-537/SA-537M</td>
<td>Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel.</td>
</tr>
<tr>
<td>SA-553/SA-553M</td>
<td>Pressure Vessel Plates, Alloy Steel, Quenched and Tempered, 8 and 9% Nickel.</td>
</tr>
<tr>
<td>SA-562/SA-562M</td>
<td>Pressure Vessel Plates, Carbon Steel, Manganese-Titanium for Glass or Diffused Metallic Coatings.</td>
</tr>
<tr>
<td>SA-612/SA-612M</td>
<td>Pressure Vessel Plates, Carbon Steel, High Strength, for Moderate and Lower Temperature Service.</td>
</tr>
<tr>
<td>SA-645/SA-645M</td>
<td>Pressure Vessel Plates, 5% and 5 1/2% Nickel Alloy Steels, Specially Heat Treated.</td>
</tr>
<tr>
<td>SA-662/SA-662M</td>
<td>Pressure Vessel Plates, Carbon-Manganese-Silicon Steel, for Moderate and Lower Temperature Service.</td>
</tr>
<tr>
<td>SA-666</td>
<td>Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate and Flat Bar.</td>
</tr>
<tr>
<td>SA-693</td>
<td>Precipitation-Hardening Stainless and Heat-Resisting Steel Plate, Sheet, and Strip.</td>
</tr>
<tr>
<td>SA-724/SA-724M</td>
<td>Pressure Vessel Plates, Carbon-Manganese-Silicon Steel, Quenched and Tempered, for Welded Pressure Vessels.</td>
</tr>
<tr>
<td>SA-737/SA-737M</td>
<td>Pressure Vessel Plates, High-Strength, Low-Alloy Steel.</td>
</tr>
<tr>
<td>SA-738/SA-738M</td>
<td>Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel, for Moderate and Lower Temperature Service.</td>
</tr>
<tr>
<td>SA-841/SA-841M</td>
<td>Steel Plates for Pressure Vessels, Produced by the Thermo-Mechanical Control Process (TMCP).</td>
</tr>
<tr>
<td>SA-1010/SA-1010M</td>
<td>Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip.</td>
</tr>
<tr>
<td>SA/AS 1548</td>
<td>Steel Plates for Pressure Equipment.</td>
</tr>
<tr>
<td>SA/EN 10028-2</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 2: Non-Alloy and Alloy Steels With Specified Elevated Temperature Properties.</td>
</tr>
<tr>
<td>SA/EN 10028-3</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 3: Weldable Fine Grain Steels, Normalized.</td>
</tr>
<tr>
<td>SA/EN 10028-7</td>
<td>Flat Products Made of Steels for Pressure Purposes Part 7: Stainless Steels.</td>
</tr>
<tr>
<td>SA/GB 6654</td>
<td>Steel Plates for Pressure Vessels.</td>
</tr>
<tr>
<td>SA/JIS G3118</td>
<td>Carbon Steel Plates for Pressure Vessels for Intermediate and Moderate Temperature Service.</td>
</tr>
</tbody>
</table>

Structural Steel

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-6/SA-6M</td>
<td>General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling.</td>
</tr>
<tr>
<td>SA-36/SA-36M</td>
<td>Carbon Structural Steel.</td>
</tr>
<tr>
<td>SA-283/SA-283M</td>
<td>Low and Intermediate Tensile Strength Carbon Steel Plates.</td>
</tr>
<tr>
<td>Standard Code</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SA-572/SA-572M</td>
<td>High-Strength Low-Alloy Columbium-Vanadium Structural Steel</td>
</tr>
<tr>
<td>SA-656/SA-656M</td>
<td>Hot-Rolled Structural Steel, High-Strength Low-Alloy Plate With Improved Formability</td>
</tr>
<tr>
<td>SA-1008/SA-1008M</td>
<td>Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy With Improved Formability</td>
</tr>
<tr>
<td>SA-1011/SA-1011M</td>
<td>Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy With Improved Formability, and Ultra-High-Strength</td>
</tr>
<tr>
<td>SA/CSA-G40.21</td>
<td>Structural Quality Steels</td>
</tr>
</tbody>
</table>

Steel Bars

<table>
<thead>
<tr>
<th>Standard Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-6/SA-6M</td>
<td>General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling</td>
</tr>
<tr>
<td>SA-29/SA-29M</td>
<td>Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements for</td>
</tr>
<tr>
<td>SA-31</td>
<td>Steel Rivets and Bars for Rivets, Pressure Vessels</td>
</tr>
<tr>
<td>SA-276</td>
<td>Stainless Steel Bars and Shapes</td>
</tr>
<tr>
<td>SA-311/SA-311M</td>
<td>Cold-Drawn, Stress-Relieved Carbon Steel Bars Subject to Mechanical Property Requirements</td>
</tr>
<tr>
<td>SA-479/SA-479M</td>
<td>Stainless Steel Bars and Shapes for Use in Boilers and Other Pressure Vessels</td>
</tr>
<tr>
<td>SA-484/SA-484M</td>
<td>General Requirements for Stainless and Steel Bars, Billets, and Forgings</td>
</tr>
<tr>
<td>SA-564/SA-564M</td>
<td>Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes</td>
</tr>
<tr>
<td>SA-638/SA-638M</td>
<td>Precipitation Hardening Iron Base Superalloy Bars, Forgings, and Forging Stock for High-Temperature Service</td>
</tr>
<tr>
<td>SA-675/SA-675M</td>
<td>Steel Bars, Carbon, Hot-Wrought, Special Quality, Mechanical Properties</td>
</tr>
<tr>
<td>SA-695</td>
<td>Steel Bars, Carbon, Hot-Wrought, Special Quality, for Fluid Power Applications</td>
</tr>
<tr>
<td>SA-696</td>
<td>Steel Bars, Carbon, Hot-Wrought or Cold-Finished, Special Quality, for Pressure Piping Components</td>
</tr>
<tr>
<td>SA-739</td>
<td>Steel Bars, Alloy, Hot-Wrought, for Elevated Temperature or Pressure-Containing Parts, or Both</td>
</tr>
<tr>
<td>SA/JIS G4303</td>
<td>Stainless Steel Bars</td>
</tr>
</tbody>
</table>

Steel Bolting Materials

<table>
<thead>
<tr>
<th>Standard Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-193/SA-193M</td>
<td>Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature or High Pressure Service and Other Special Purpose Applications</td>
</tr>
<tr>
<td>SA-194/SA-194M</td>
<td>Carbon and Alloy Steel Nuts for Bolts for High-Pressure or High-Temperature Service, or Both</td>
</tr>
<tr>
<td>SA-307</td>
<td>Carbon Steel Bolts and Studs, 60 000 psi Tensile Strength</td>
</tr>
<tr>
<td>SA-320/SA-320M</td>
<td>Alloy Steel and Stainless Steel Bolting Materials for Low-Temperature Service</td>
</tr>
<tr>
<td>SA-325</td>
<td>Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength</td>
</tr>
<tr>
<td>SA-354</td>
<td>Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners</td>
</tr>
<tr>
<td>SA-437/SA-437M</td>
<td>Alloy-Steel Turbine-Type Bolting Material Specially Heat Treated for High-Temperature Service</td>
</tr>
<tr>
<td>SA-449</td>
<td>Hex Cap Screws, Bolts and Studs, Steel, Heat Treated, 120/105/90 ksi Minimum Tensile Strength, General Use</td>
</tr>
<tr>
<td>SA-453/SA-453M</td>
<td>High-Temperature Bolting Materials, With Expansion Coefficients Comparable to Austenitic Steel</td>
</tr>
</tbody>
</table>
SA-540/SA-540M Alloy Steel Bolting Materials for Special Applications .. 985
SA-563 Carbon and Alloy Steel Nuts .. 1035
SA-574 Alloy Steel Socket-Head Cap Screws .. 1097
SA-962/SA-962M Common Requirements for Steel Fasteners or Fastener Materials, or Both, Intended for Use at Any Temperature From Cryogenic to the Creep Range .. 1517
SF-568M Carbon and Alloy Steel Externally Threaded Metric Fasteners .. 1623

Steel Billets and Forgings
SA-105/SA-105M Carbon Steel Forgings, for Piping Applications .. 189
SA-181/SA-181M Carbon Steel Forgings, for General-Purpose Piping .. 233
SA-266/SA-266M Carbon Steel Forgings for Pressure Vessel Components 417
SA-336/SA-336M Alloy Steel Forgings for Pressure and High-Temperature Parts 555
SA-350/SA-350M Carbon and Low-Alloy Steel Forgings, Requiring Notch Toughness Testing for Piping Components .. 563
SA-372/SA-372M Carbon and Alloy Steel Forgings for Thin-Walled Pressure Vessels 679
SA-484/SA-484M General Requirements for Stainless Steel Bars, Billets, and Forgings 871
SA-508/SA-508M Quenched and Tempered Vacuum-Treated Carbon and Alloy Steel Forgings for Pressure Vessels .. 897
SA-541/SA-541M Quenched and Tempered Carbon and Alloy Steel Forgings for Pressure Vessel Components ... 995
SA-638/SA-638M Precipitation Hardening Iron Base Superalloy Bars, Forgings, and Forging Stock for High-Temperature Service .. 1143
SA-649/SA-649M Forged Steel Rolls, Used for Corrugating Paper Machinery 1153
SA-705/SA-705M Age-Harding Stainless Steel Forgings .. 1263
SA-723/SA-723M Alloy Steel Forgings for High-Strength Pressure Component Application 1271
SA-745/SA-745M Ultrasonic Examination of Austenitic Steel Forgings 1313
SA-765/SA-765M Carbon Steel and Low-Alloy Steel Pressure-Vessel-Component Forgings With Mandatory Toughness Requirements .. 1345
SA-788/SA-788M Steel Forgings, General Requirements ... 1379
SA-836/SA-836M Titanium-Stabilized Carbon Steel Forgings for Glass-Lined Piping and Pressure Vessel Service .. 1465
SA-965/SA-965M Steel Forgings, Austenitic, for Pressure and High Temperature Parts 1531

Steel Castings
SA-216/SA-216M Steel Castings, Carbon, Suitable for Fusion Welding for High-Temperature Service ... 331
SA-217/SA-217M Steel Castings, Martensitic Stainless and Alloy, for Pressure-Containing Parts, Suitable for High-Temperature Service ... 335
SA-351/SA-351M Castings, Austenitic, Austenitic-Ferritic (Duplex), for Pressure-Containing Parts ... 575
SA-352/SA-352M Steel Castings, Ferritic and Martensitic, for Pressure-Containing Parts, Suitable for Low Temperature Service ... 583
SA-487/SA-487M Steel Castings Suitable for Pressure Service ... 887
SA-494/SA-494M Castings, Nickel and Nickel Alloy ... 895
SA-609/SA-609M Castings, Carbon, Low-Alloy, and Martensitic Stainless Steel, Ultrasonic Examination Thereof .. 1127
SA-667/SA-667M Centrifugally Cast Dual Metal (Gray and White Cast Iron) Cylinders 1183
SA-703/SA-703M Steel Castings, General Requirements, for Pressure-Containing Parts 1243
SA-747/SA-747M Steel Castings, Stainless, Precipitation Hardening .. 1319
SA-781/SA-781M Castings, Steel and Alloy, Common Requirements, for General Industrial Use ... 1361
Corrosion-Resisting and Heat-Resisting Steels

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-182/SA-182M</td>
<td>Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves for High-Temperature Service</td>
<td>237</td>
</tr>
<tr>
<td>SA-193/SA-193M</td>
<td>Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature or High Pressure Service and Other Special Purpose Applications</td>
<td>261</td>
</tr>
<tr>
<td>SA-194/SA-194M</td>
<td>Carbon and Alloy Steel Nuts for Bolts for High-Pressure or High-Temperature Service, or Both</td>
<td>277</td>
</tr>
<tr>
<td>SA-213/SA-213M</td>
<td>Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat Exchanger Tubes</td>
<td>315</td>
</tr>
<tr>
<td>SA-216/SA-216M</td>
<td>Steel Castings, Carbon, Suitable for Fusion Welding for High-Temperature Service</td>
<td>331</td>
</tr>
<tr>
<td>SA-217/SA-217M</td>
<td>Steel Castings, Martensitic Stainless and Alloy, for Pressure Containing Parts Suitable for High-Temperature Service</td>
<td>335</td>
</tr>
<tr>
<td>SA-240/SA-240M</td>
<td>Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications</td>
<td>365</td>
</tr>
<tr>
<td>SA-249/SA-249M</td>
<td>Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes</td>
<td>377</td>
</tr>
<tr>
<td>SA-264</td>
<td>Stainless Chromium-Nickel Steel Clad Plate</td>
<td>401</td>
</tr>
<tr>
<td>SA-265</td>
<td>Nickel and Nickel-Base Alloy-Clad Steel Plate</td>
<td>409</td>
</tr>
<tr>
<td>SA-268/SA-268M</td>
<td>Seamless and Welded Ferritic and Martensitic Stainless Steel Tubing for General Service</td>
<td>423</td>
</tr>
<tr>
<td>SA-312/SA-312M</td>
<td>Seamless and Welded Austenitic Stainless Steel Pipes</td>
<td>487</td>
</tr>
<tr>
<td>SA-320/SA-320M</td>
<td>Alloy Steel and Stainless Steel Bolting Materials for Low-Temperature Service</td>
<td>499</td>
</tr>
<tr>
<td>SA-336/SA-336M</td>
<td>Alloy Steel Forgings for Pressure and High-Temperature Parts</td>
<td>555</td>
</tr>
<tr>
<td>SA-351/SA-351M</td>
<td>Castings, Austenitic, Austenitic-Ferritic (Duplex), for Pressure-Containing Parts</td>
<td>575</td>
</tr>
<tr>
<td>SA-358/SA-358M</td>
<td>Electric-Fusion-Welded Austenitic Chromium-Nickel Alloy Steel Pipe for High-Temperature Service</td>
<td>605</td>
</tr>
<tr>
<td>SA-369/SA-369M</td>
<td>Carbon and Ferritic Alloy Steel Forged and Bored Pipe for High-Temperature Service</td>
<td>615</td>
</tr>
<tr>
<td>SA-376/SA-376M</td>
<td>Seamless Austenitic Steel Pipe for High-Temperature Central-Station Service</td>
<td>685</td>
</tr>
<tr>
<td>SA-403/SA-403M</td>
<td>Wrought Austenitic Stainless Steel Piping Fittings</td>
<td>725</td>
</tr>
<tr>
<td>SA-409/SA-409M</td>
<td>Welded Large Diameter Austenitic Steel Pipe for Corrosive or High-Temperature Service</td>
<td>735</td>
</tr>
<tr>
<td>SA-426/SA-426M</td>
<td>Centrifugally Cast Ferritic Alloy Steel Pipe for High-Temperature Service</td>
<td>765</td>
</tr>
<tr>
<td>SA-437/SA-437M</td>
<td>Alloy Steel Turbine-Type Bolting Material Specially Heat Treated for High-Temperature Service</td>
<td>775</td>
</tr>
<tr>
<td>SA-451/SA-451M</td>
<td>Centrifugally Cast Austenitic Steel Pipe for High-Temperature Service</td>
<td>805</td>
</tr>
<tr>
<td>SA-479/SA-479M</td>
<td>Stainless Steel Bars and Shapes for Use in Boilers and Other Pressure Vessels</td>
<td>831</td>
</tr>
<tr>
<td>SA-484/SA-484M</td>
<td>General Requirements for Stainless Steel Bars, Billets, and Forgings</td>
<td>871</td>
</tr>
<tr>
<td>SA-515/SA-515M</td>
<td>Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature Service</td>
<td>933</td>
</tr>
<tr>
<td>SA-564/SA-564M</td>
<td>Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes</td>
<td>1047</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>SA-638</td>
<td>Precipitation Hardening Iron Base Superalloy Bars, Forgings, and Forging Stock for High-Temperature Service</td>
<td>1143</td>
</tr>
<tr>
<td>SA-660</td>
<td>Centrifugally Cast Carbon Steel Pipe for High-Temperature Service</td>
<td>1161</td>
</tr>
<tr>
<td>SA-666</td>
<td>Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate and Flat Bar</td>
<td>1173</td>
</tr>
<tr>
<td>SA-691</td>
<td>Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High-Pressure Service at High Temperatures</td>
<td>1219</td>
</tr>
<tr>
<td>SA-705</td>
<td>Age-Hardening Stainless Steel Forgings</td>
<td>1263</td>
</tr>
<tr>
<td>SA-789</td>
<td>Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service</td>
<td>1395</td>
</tr>
<tr>
<td>SA-790</td>
<td>Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe</td>
<td>1403</td>
</tr>
<tr>
<td>SA-814</td>
<td>Cold-Worked Welded Austenitic Stainless Steel Pipe</td>
<td>1437</td>
</tr>
<tr>
<td>SA-815</td>
<td>Wrought Ferritic, Ferritic/Austenitic, and Martensitic Stainless Steel Piping Fittings</td>
<td>1445</td>
</tr>
<tr>
<td>SA-995</td>
<td>Castings, Austenitic-Ferritic (Duplex) Stainless Steel, for Pressure-Containing Parts</td>
<td>1559</td>
</tr>
</tbody>
</table>

Wrought Iron, Cast Iron, and Malleable Iron

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-47</td>
<td>Ferritic Malleable Iron Castings</td>
<td>153</td>
</tr>
<tr>
<td>SA-278</td>
<td>Gray Iron Castings for Pressure-Containing Parts for Temperatures Up to 650°F (350°C)</td>
<td>451</td>
</tr>
<tr>
<td>SA-395</td>
<td>Ferritic Ductile Iron Pressure-Retaining Castings for Use at Elevated Temperatures</td>
<td>713</td>
</tr>
<tr>
<td>SA-476</td>
<td>Ductile Iron Castings for Paper Mill Dryer Rolls</td>
<td>825</td>
</tr>
<tr>
<td>SA-748</td>
<td>Statically Cast Chilled White Iron-Gray Iron Dual Metal Rolls for Pressure Vessel Use</td>
<td>1325</td>
</tr>
<tr>
<td>SA-834</td>
<td>Common Requirements for Iron Castings for General Industrial Use</td>
<td>1461</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-275</td>
<td>Magnetic Particle Examination of Steel Forgings</td>
<td>433</td>
</tr>
<tr>
<td>SA-370</td>
<td>Test Methods and Definitions for Mechanical Testing of Steel Products</td>
<td>621</td>
</tr>
<tr>
<td>SA-388</td>
<td>Ultrasonic Examination of Heavy Steel Forgings</td>
<td>703</td>
</tr>
<tr>
<td>SA-435</td>
<td>Straight-Beam Ultrasonic Examination of Steel Plates</td>
<td>771</td>
</tr>
<tr>
<td>SA-577</td>
<td>Ultrasonic Angle-Beam Examination of Steel Plates</td>
<td>1005</td>
</tr>
<tr>
<td>SA-578</td>
<td>Straight-Beam Ultrasonic Examination of Rolled Steel Plates for Special Applications</td>
<td>1109</td>
</tr>
<tr>
<td>SA-745</td>
<td>Ultrasonic Examination of Austenitic Steel Forgings</td>
<td>1313</td>
</tr>
<tr>
<td>SA-751</td>
<td>Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products</td>
<td>1337</td>
</tr>
</tbody>
</table>
From time to time, it becomes necessary to remove specifications from this Part of Section II. This occurs because the sponsoring society (e.g., ASTM, AWS, CEN) has notified ASME that the specification has either been replaced with another specification, or that there is no known use and production of a material. Removal of a specification from this Section also results in concurrent removal of the same specification from Section IX and from all of the ASME Boiler and Pressure Vessel Construction Codes that reference the material. This action effectively prohibits further use of the material in ASME Boiler and Pressure Vessel construction.

The following specifications will be dropped from this Section in the next Addenda (if applicable), unless information concerning current production and use of the material is received before December 1 of this year:

SA-557/SA-557M-90a (discontinued by ASTM in 1995, replaced by A 178/A 178M)¹

SA-731/SA-731M-91 (discontinued by ASTM in 1995, replaced by A 268/A 268M)¹

If you are currently using and purchasing new material to this specification for ASME Boiler and Pressure Vessel Code construction, and if discontinuance of this specification would present a hardship, please notify the Secretary of the ASME Boiler and Pressure Vessel Committee, at the address shown below:

Secretary
ASME Boiler and Pressure Vessel Committee
Three Park Avenue
New York, NY 10016-5990
Tel: (212) 591-8533
Fax: (212) 591-8501

¹ The replacement specifications are currently in Section II, Part A.